
Getting started with Red Hat
OpenShift Service Mesh
A guide to production deployment and Day 2 operations

By Stelios Kousouris, Senior Applications Architect,
and Ortwin Schneider, Principal Product Marketing Manager

2

Contents

Introduction

Part 1: Heading to production

Chapter 1: Service mesh requirements and prerequisites

Chapter 2: Development environment set up

Chapter 3: Production environment set up

Chapter 4: Onboarding an external travel portal

Chapter 5: Complying with a new security regulation

Chapter 6: Expanding partnerships and implementing broker services

Part 2: Day 2 operations

Chapter 7: Troubleshooting the mesh

Chapter 8: Tuning the service mesh

Chapter 9: Upgrading your service mesh to a new version

3

Introduction
Technology and applications are at the core of today’s digital businesses, and many organizations are building modern service
management architectures to support rapid, iterative application development and deployment. Service meshes play a
key role in these architectures, connecting sets of discrete services into complete applications. They streamline application
development, simplify troubleshooting, enhance observability, increase resiliency, and facilitate performance tuning.

Even so, building your service mesh is only the first step. To derive value from it, you must configure, tune, and maintain your
service mesh according to your organization’s requirements. This e-book provides guidance on governance, design practices,
and configuring Red Hat® OpenShift® Service Mesh for production use and on performing Day 2 operations.

Red Hat OpenShift Service Mesh basics
Red Hat OpenShift Service Mesh — included with Red Hat OpenShift — provides a uniform way to connect, manage, and
observe microservices-based applications. It incorporates a set of open source projects for integrating, managing, tracing,
monitoring, and analyzing traffic between microservices:

 ► Istio, an open source project for integrating and managing traffic between services.

 ► Jaeger, an open, distributed tracing system that tracks requests as they move between services.

 ► Kiali, an open source project for viewing configurations, monitoring traffic, and analyzing traces.

 ► Multiple networking interfaces.

 ► The Red Hat 3scale Istio plugin for integration with Red Hat 3scale API Management.

Key features and capabilities
Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of services:

 ► Traffic management. Control the flow of traffic and application programming interface (API) calls between services,
make calls more reliable, and make the network more robust in the face of adverse conditions.

 ► Service identity and security. Provide services in the mesh with a verifiable identity and provide the ability to protect
service traffic as it flows over networks of varying degrees of trustworthiness.

 ► Policy enforcement. Apply organizational policy to the interaction between services, ensure access policies are enforced
and resources are fairly distributed among consumers.

 ► Telemetry. Gain understanding of the dependencies between services and the nature and flow of traffic between them,
providing the ability to quickly identify issues.

Chapter 9Chapter 8Chapter 7

Part 2: Day 2 operations

Chapter 6Chapter 5Chapter 4Chapter 3Chapter 2Chapter 1

Part 1: Heading to productionIntroduction

https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.openshift.com/learn/topics/service-mesh
https://www.redhat.com/en/topics/microservices/what-is-istio
https://www.redhat.com/en/topics/microservices/what-is-jaeger
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/service_mesh/service-mesh-architecture#ossm-kiali
https://developers.redhat.com/articles/2021/12/06/custom-webassembly-extensions-openshift-service-mesh#

4

Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsIntroduction

With Red Hat OpenShift Service Mesh:

 ► Developers can focus on adding business value, instead
of connecting services.

 ► Problems are easier to identify and diagnose via distributed
request tracing and a visible infrastructure layer.

 ► Applications are more resilient to downtime, since a service
mesh can reroute requests away from failed services.

 ► Communications in the runtime environment can be
optimized using performance metrics and observability.

Online resources for this e-book
In addition to this e-book, we have also created an online
repository of associated resources. The repository includes
additional details, setup scripts, and code examples that you
can use with this e-book. Links are included throughout the
text, and you can click on the link icon next to each section
to go directly to that section in the online repository.

Further reading
Learn more about Red Hat OpenShift Service Mesh and how it can help your teams connect, manage, and observe
microservices-based applications:

 ► Red Hat OpenShift Service Mesh product documentation

 ► Red Hat OpenShift Service Mesh product information

 ► Service mesh or API management e-book

Microservice Sidecar

Service mesh

Figure 1. Conceptual service mesh architecture

Try Red Hat OpenShift Service Mesh
Get started with Red Hat OpenShift Service
Mesh in a local environment. Install Red Hat
OpenShift Local on your laptop to follow along
with the exercises in this e-book. With Red Hat
OpenShift Local, you can also experiment with
a service mesh — and other Red Hat OpenShift
features — on your own.

Download Red Hat OpenShift Local.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/service_mesh/index
https://www.redhat.com/en/technologies/cloud-computing/openshift/service-mesh
https://www.redhat.com/en/resources/service-mesh-and-api-management-e-book
https://developers.redhat.com/products/openshift-local/overview

5

Part 1: Heading to production
Organizations deploy service meshes for many use cases, but most have common underpinnings. To better illustrate how Red
Hat OpenShift Service Mesh deployment and operations looks in real life, we’ll follow a fictional organization—Travel
by Keyboard—as they set up, operate, and maintain a service mesh.

About Travel by Keyboard
Travel by Keyboard is an agency specializing in all-in-one travel packages to worldwide destinations. The agency works with
airlines, hotels, car rental services, and insurance providers to create complete travel experiences for its customers.

Travel by Keyboard’s IT department operates a travel portal and booking platform system architecture to support the business.
Currently, the travel portal and booking platform do not use a service mesh, but the organization would like to deploy a service
mesh to improve flexibility and resiliency while streamlining development and operations.

Travel by Keyboard’s target service mesh architecture is shown in Figure 2. It features a microservices backend architecture
with services for travels, flights, hotels, cars, and insurances (contained in the travel-agency namespace). The travel-
portal namespace will include tenants for customers and partners. Travel by Keyboard also wants the option to integrate with
external travel portals via APIs to allow them to expand and extend their services as needed.

Several teams and roles within the Travel by Keyboard organization will interact with the service mesh architecture:

Travel agency production service mesh
(Red Hat OpenShift Service Mesh)

travel-portal
namespace

Voyages.fr

Viaggi.it

Travels.uk

Shop.de

Shop.es

travel-control
namespace

Simulator

travel-agency
namespace

Flights

Hotels

Cars

Insurances

DiscountsTravels

Figure 2. Travel by Keyboard’s target service mesh architecture

 ► The Travel Portal product team will own the travel
portal infrastructure and applications.

 ► The Travel Services product team will own the travel
services infrastructure and applications.

 ► A single product owner will own the complete travel
agency platform.

 ► A platform admin will maintain the Red Hat OpenShift
platform and operators.

 ► A service mesh operator will manage the service mesh
control plane.

 ► Several mesh developers will create traffic
configurations for the service mesh.

Chapter 9Chapter 8Chapter 7

Part 2: Day 2 operations

Chapter 6Chapter 5Chapter 4Chapter 3Chapter 2Chapter 1

Part 1: Heading to productionIntroduction

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/README.adoc#ossm-heading-to-production-and-day-2

6

Introduction

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 1

Part 1: Heading to production

Chapter 1

Service mesh requirements and prerequisites
The first step in deploying a service mesh into production is identifying your business and architecture requirements. You can
collect these requirements in a variety of ways, but it’s important to engage and understand the expectations of all stakeholders.

Identify service mesh requirements
In our example, the key stakeholders are the development, product, security, and platform teams. At the project kick-off
meeting, the stakeholders identified the following requirements.

Development team requirements:

 ► Ability to trace every request during development
and sample 20% of traffic in production

 ► Features and configurations to improve application
resiliency, stability, and reliability

Product team requirements:

 ► Ability to collect reportable performance and use metrics

 ► Ability to store metrics for up to one week

Security team requirements:

 ► Mutual transport layer security (mTLS) for
all intramesh and intermesh communications

Platform team requirements:

 ► Centrally managed security

 ► Declarative approach — like GitOps — 
for configuring and managing the service mesh

Define service mesh roles and responsibilities
The next step is to define the personas, roles, and responsibilities that will be involved with building and managing your service
mesh. Several organizational, operational, and governance factors can impact how these items are set up. Factors include:

 ► The type of clusters and meshes used. Clusters can be multidomain application clusters or focused clusters, while meshes
can be multitenant or single tenant.

 ► The type of automation used for cloud service configuration. Choices include pipelines, GitOps, automation platforms,
scripts, and management tools.

 ► The platform or service mesh operating model. This defines how the service mesh is accessed. A producer-consumer
platform lets administrators and operators deploy all configurations for developers to consume, while a self-service
platform allows developers to provision preapproved configurations themselves.

 ► Whether you have adopted DevSecOps approaches for application and cloud configuration delivery. DevSecOps
approaches bring together development, security, and operations into a collaborative shared-responsibility paradigm.
The goal is to break down barriers between roles, disciplines, and teams across an organization to encourage collaboration
and work toward common goals. A DevSecOps approach encompasses people, processes, technology, and governance.

https://www.redhat.com/en/topics/security/devsecops/approach
https://www.redhat.com/en/topics/security/devsecops/approach
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#requirements-capture-to-drive-mesh-adoption--configuration
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#user-governance-capture

7

Introduction

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 1

Part 1: Heading to production

 ► Cluster type: Focused clusters

 ► Mesh type: Cluster-wide single tenant

 ► Automation: Scripts, moving to GitOps over time

Operational setup
Our example will use the following operational setup:

 ► Operating model: Self-service (restricted)

 ► DevSecOps: Adopted

Now you can define your enterprise personas and assign service mesh roles and responsibilities to them. Setup scripts
for each role in this example are linked in the table and also provided in the online resource repository.

Table 1. Enterprise personas, service mesh roles, and responsibilities

Enterprise
persona

Service
mesh role Responsibilities

Platform
administrator

Cluster admin
(default
admin role)

The cluster admin owns and operates Red Hat OpenShift clusters and sets
organizational policies. They have all cluster privileges.

 ► Add, remove, and update cluster operators.

 ► Install container images to the image registry.

 ► Update OpenShift versions.

 ► Set up cluster infrastructure and configurations, including routers, networking,
nodes, and resources.

 ► Set up security.

 ► Provide service mesh resources to retrieve logs for troubleshooting.

Mesh
operator

Mesh operator The mesh operator operates the service mesh control plane namespaces. They can
administer one or more service meshes, depending on your operational setup.

 ► Add, remove, and update the service mesh control plane, member role, member,
and Istio resources within the owned namespaces.

 ► Configure the service mesh observability stack.

 ► Set up mesh security and certificates.

 ► Configure ingress and egress gateways for both north-south and east-west traffic.

Domain owner
(technical
lead)

Mesh developer The domain owner understands the internal and external dependencies for applications
that interact with the service mesh and onboards developers.

 ► Define environments for domain-based applications.

 ► Define Istio configurations for the service mesh data plane.

 ► Work with mesh operators to configure ingress and egress traffic and resources.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#execute-role--user-creation
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-operator-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-dev-roles.sh

8

Introduction

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 1

Part 1: Heading to production

Enterprise
persona

Service
mesh role Responsibilities

Developer Mesh
application
viewer
(development
environments)

Developers use the configured platform, mesh, and observability stack to review
and troubleshoot application functionality and performance.

 ► Monitor the health, performance, and functional capabilities of applications.

 ► Access Kiali visualizations, Jaeger telemetry, Prometheus metrics, and pod logs
in the development environment.

Application
operator

Mesh developer
(non-
development
environments)

Application operators monitor and maintain applications deployed in the cluster
and within the domain hosted mesh.

 ► Access logs and envoy proxy configurations, telemetry, and traces to validate
issues within their domain.

 ► Extract information and work with mesh operators and developers to identify issues.

 ► Suggest Istio configurations to mesh operators and developers.

Product
owner

Mesh
application
viewer (non-
development
environments)

Product owners monitor the applications that comprise their product, both within
and outside of the mesh, using the observability stack.

 ► Monitor product health, use, cost, and other metrics within their domain.

 ► Access observability stack information for up to one week after collection.

Logins for examples
This e-book provides example
code, scripts, and interfaces that
must be used by specific personas.
Login information (username and
password) for each person in our
example scenario are shown in
Tables 2 and 3.

Map enterprise users to service mesh roles
Once you’ve defined your personas, roles, and responsibilities, you can map them
to your team members. Following best practices, we’ll map users to personas,
roles, and namespaces within our development and production environments.
The following tables show the development and production environment roles for
Travel by Keyboard. The tables also include the usernames and passwords to be
used in the examples throughout this e-book. For convenience in our examples,
each person’s username is their name (all lowercase), and their password is the
same as their username.

Table 2. User mapping for development environment

Name Username/password Enterprise persona Service mesh role Namespaces

Phillip phillip/phillip Platform admin Cluster admin dev-istio-system

Emma emma/emma Mesh operator Mesh operator dev-istio-system

Cristina cristina/cristina Travel portal domain owner
(technical lead)

Mesh developer dev-travel-portal,
dev-travel-control

Farid farid/farid Travel services domain owner
(technical lead)

Mesh developer dev-travel-agency

John john/john Travel portal developer Mesh application
viewer

dev-travel-portal,
dev-travel-control

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-viewer-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-viewer-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-viewer-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-dev-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-viewer-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-viewer-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/scripts/create-mesh-viewer-roles.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#mapping-enterprise-users-to-roles-in-the-dev-environment

9

Introduction

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 1

Part 1: Heading to production

Name Username/password Enterprise persona Service mesh role Namespaces

Mia mia/mia Travel services developer Mesh application
viewer

dev-travel-agency

Mus mus/mus Product owner Mesh application
viewer

dev-travel-portal,
dev-travel-control,
dev-travel-agency

Table 3. User mapping for production environment

Name Username/password Enterprise persona Service mesh role Namespaces

Phillip phillip/phillip Platform admin Cluster admin prod-istio-system

Emma emma/emma Mesh operator Mesh operator prod-istio-system

Cristina cristina/cristina Travel portal domain owner
(technical lead)

Mesh developer prod-travel-portal,
prod-travel-control

Farid farid/farid Travel services domain owner
(technical lead)

Mesh developer prod-travel-agency

Craig craig/craig Application operator
(platform team)

Mesh developer prod-travel-portal,
prod-travel-control,
prod-travel-agency

Mus mus/mus Product owner Mesh application
viewer

prod-travel-portal,
prod-travel-control,
prod-travel-agency

Determine your service mesh deployments
Finally, you need to identify the deployment components to be used within your service mesh. Table 4 shows the components
and number of instances of each that will be used in Travel by Keyboard’s development environments. We will define the final
production setup as we move through the deployment process in the following chapters.

Table 4. Development environment service mesh architecture components

Component
Number of
instances

grafana 1

istiod 1

istio-egressgateway 1

istio-ingressgateway 1

Component
Number of
instances

jaeger 1

kiali 1

prometheus 1

wasm-cacher-client-side-tenant 1

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#environment-service-mesh-architectures

10

Introduction

Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 2

Part 1: Heading to production

Chapter 2

Development environment set up
In this chapter, we’ll set up the development environment for the travel portal and travel agency teams. Specific roles
need to perform each task. In this case, the platform admin, mesh operator, and domain owners will set up the environment.
The product owner, domain owners, developers, and mesh operators will use the observability stack to verify the setup.

Example code and scripts are provided for each step throughout this and the following chapters. Additional information
and the scripts themselves are included in the online resource repository.

Development environment set up
This section provides information on setting up the development environment. In our example, Phillip, Emma, Farid,
and Cristina perform these tasks.

Define your cluster login URL
The platform admin (as the cluster admin role), Phillip, is responsible for setting up the overall cluster and platform.

1. Define the cluster URL to allow users to log in:

export CLUSTER_API=<YOUR-CLUSTER-API-URL>

Prepare service mesh operators, namespaces, roles, and users
The platform admin (as the cluster admin role), Phillip, is also responsible for setting up the operators, namespaces,
and roles within the development environment.

1. Change to the development set up directory and log in as Phillip:

cd ossm-heading-to-production-and-day-2/scenario-2-dev-setup
./login-as.sh phillip

2. Add the Red Hat OpenShift Service Mesh operators to the cluster via the Red Hat OpenShift marketplace:

../common-scripts/add-operators-subscriptions-sm.sh

3. Create the required development travel agency namespaces:

../common-scripts/create-travel-agency-namespaces.sh dev

4. Create the service mesh roles as defined in Chapter 1.

5. Create the development environment service mesh users and assign roles as defined in Chapter 1.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup
https://docs.openshift.com/container-platform/4.10/applications/red-hat-marketplace.html
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#roleusercreation
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#execute-user--role-creation-for-dev-environment
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#setup-dev-environment
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#platform-admin---operators-namespace-userroles-preparation-actions
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#platform-admin---operators-namespace-userroles-preparation-actions

11

Introduction

Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 2

Part 1: Heading to production

Create the service mesh control namespace
The mesh operator, Emma, is responsible for creating the control plane namespace and ServiceMeshControlPlane
(or smcp) resource within the development environment.

1. Create the dev-basic service mesh control plane in the development environment:

./login-as.sh emma

./scripts/create-dev-smcp.sh dev-istio-system dev-basic

Configure service mesh membership and deploy applications
The domain owners (as mesh developer roles), Farid and Cristina, are responsible for enrolling namespaces as members
in the service mesh and for deploying applications within the development environment.

Travel services domain (dev-travel-agency namespaces)

Farid owns the travel services domain and deploys applications to it as a mesh developer.

1. Check project labels prior to service mesh membership configuration:

./login-as.sh farid

../common-scripts/check-project-labels.sh dev-travel-agency

2. Add membership for the dev-travel-agency namespace to the dev-basic service mesh control plane by adding
a ServiceMeshMember resource:

../common-scripts/create-membership.sh dev-istio-system dev-basic dev-travel-agency

../common-scripts/check-project-labels.sh dev-travel-agency

3. Deploy applications to the dev-travel-agency namespaces:

./scripts/deploy-travel-services-domain.sh dev dev-istio-system

Travel portal domain (dev-travel-portal and dev-travel-control namespaces)

Cristina owns the travel portal domain and deploys applications to it as a mesh developer.

1. Check project labels prior to service mesh membership configuration:

./login-as.sh cristina

../common-scripts/check-project-labels.sh dev-travel-control

../common-scripts/check-project-labels.sh dev-travel-portal

2. Add membership for the dev-travel-control and dev-travel-portal namespaces to the dev-basic service mesh
control plane by adding a ServiceMeshMember resource for each:

../common-scripts/create-membership.sh dev-istio-system dev-basic dev-travel-control

../common-scripts/check-project-labels.sh dev-travel-control

../common-scripts/create-membership.sh dev-istio-system dev-basic dev-travel-portal

../common-scripts/check-project-labels.sh dev-travel-portal

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#mesh-operator---service-mesh-control-namespace-and-servicemeshcontrolplane-creation
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#domain-owner---application-namespaces-service-mesh-membership-enrollnment-and-applications-deployment

12

Introduction

Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 2

Part 1: Heading to production

3. Deploy applications to the dev-travel-control and dev-travel-portal namespaces:

./scripts/deploy-travel-portal-domain.sh dev dev-istio-system

Create a gateway for connections to the travel agency portal
The mesh operator, Emma, is responsible for creating the Istio Gateway resource to expose connections to the travel
agency portal.

1. Create the Istio Gateway resource:

./login-as.sh emma

./scripts/create-ingress-gateway.sh dev-istio-system

Development observability stack use and setup verification
This section provides information on using the observability stack to verify the setup of the development environment.
It also provides information on how each role can use the observability stack. Exercises for using the observability stack
as each role, as well as screenshots of expected outcomes, are detailed in the online resource repository.

Access the travel control dashboard
The cluster admin, mesh operator, and mesh developer roles — Phillip, Emma, Cristina, and Farid in our example — 
are responsible for capturing the URL of the travel control dashboard:

./login-as.sh <choose user>
echo "http://$(oc get route istio-ingressgateway -o jsonpath=’{.spec.host}’ -n dev-istio-system)"

You can then enter the URL in a web browser to access the travel control dashboard.

Access the observability stack
The cluster admin, mesh operator, and mesh developer roles — Phillip, Emma, Cristina, and Farid in our example — 
can capture the URLs of the observability stack, including the Kiali, Jaeger, Prometheus, and Grafana components:

./login-as.sh <choose user>
echo "http://$(oc get route kiali -o jsonpath='{.spec.host}' -n dev-istio-system)"
echo "https://$(oc get route jaeger -o jsonpath=’{.spec.host}’ -n dev-istio-system)"
echo "https://$(oc get route prometheus -o jsonpath=’{.spec.host}’ -n dev-istio-system)"
echo "https://$(oc get route grafana -o jsonpath=’{.spec.host}’ -n dev-istio-system)"

You can also access the Grafana and Jaeger URLs from the Kiali dashboard by clicking on the question mark to the left
of your name at the top of the window, and then selecting About from the pop-up menu. See the interface.

Use the observability stack as the product owner
The product owner (as a mesh application viewer), Mus, has access to all three data plane namespaces (dev-travel-portal,
dev-travel-control, and dev-travel-agency) and the control plane namespace via the Kiali dashboard. See the Kiali
dashboard for Mus.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#dev-setup-verification--observability-usage
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/about.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-mus-product-owner.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-mus-product-owner.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#mesh-operator---travel-agency-portal-exposure-via-istio-gateway-creation
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#dev-setup-verification--observability-usage
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#dev-setup-verification--observability-usage
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#access-observability-stack
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#use-the-observability-stack-as-product-owner-for-the-travel-agency-solution

13

Introduction

Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 2

Part 1: Heading to production

As the product owner mesh application viewer, you can:

 ► View traces for the overall solution. Select Distributed tracing from the Kiali menu at the left side of the dashboard
and log in with your credentials to access the tracing console.

 ► View metrics for the overall solution. Select an application workload from the Workloads section to see inbound and
outbound metrics. You can also log in directly to the Prometheus dashboard using the URL from the previous section.
You can apply the following commands to the graph view:

 ► istio_requests_total{destination_workload="discounts-v1", \app="discounts"}

 ► istio_request_duration_milliseconds_count{app="discounts"}

 ► istio_response_bytes_bucket

 ► View Grafana dashboards for the overall solution. Log in to the Grafana URL using your credentials. You can see the
status and performance of the travel agency solution by selecting Dashboards > Manage > Istio > Istio Mesh Dashboard.
See the Istio Mesh dashboard and performance view.

As the product owner, you are allowed to view, but not modify, Istio configurations. You are not allowed to view Istio logs.
You can verify that your role-based access controls are configured correctly by trying to view a configuration or log using
the Istio Config and Workloads options from the left-side menu.

Use the observability stack as the domain owner
The domain owners (as mesh developers), Cristina and Farid, have access to their respective domain namespaces. In our
example, Cristina can access two data plane namespaces (dev-travel-control and dev-travel-portal) in the Travel
Portal domain and the control plane namespace. Farid can access one data plane namespace (dev-travel-agency) in
the Travel Services domain and the control plane namespace. See the Kiali dashboards for Cristina and Farid.

As a domain owner mesh developer, you can:

 ► View traces for the overall solution. Select Distributed tracing from the Kiali menu at the left side of the dashboard
and log in with your credentials to access the tracing console.

 ► View metrics for the overall solution. Log in to the Prometheus dashboard using the URL from the previous section.
You can apply the following commands to the graph view:

 ► istio_requests_total{destination_workload="discounts-v1", \app="discounts"}

 ► istio_request_duration_milliseconds_count{app="discounts"}

 ► istio_response_bytes_bucket

 ► View logs for the workloads in your domain. Select a workload from the Workloads section in the left-side menu.
The Logs tab shows both proxy and pod logs. See the logs view.

 ► View and modify Istio configurations in your domain. Select Istio Config from the left-side menu to see the
configurations available to your role. See the Istio config view.

 ► View Grafana dashboards. Select Dashboards > Manage > Istio > Istio Service Dashboard or Dashboards > Manage > Istio >
Istio Workloads Dashboard to check the status of services or workloads, respectively, in your domain. See the Istio service
and Istio workloads dashboards.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/grafana-istio-mesh-dashboard.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/grafana-performance.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-cristina-domain-owner-tp.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-farid-domain-owner-ts.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-logs-cristina-domain-owner.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-configs-cristina-domain-owner.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/grafana-istio-service-dashboard.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/grafana-istio-workload-dashboard.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#use-the-observability-stack-as-a-domain-owner-for-the-travel-portal-or-travel-services-domain

14

Introduction

Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 2

Part 1: Heading to production

Use the observability stack as a developer
The developers (as mesh application viewers), Mia and John, have access to tracing, metrics, and dashboards within
permitted namespaces. In our example, Mia is a developer for the Travel Services domain and can access information
about the dev-travel-agency namespace. As a developer for the Travel Portal domain, John can access information
about the dev-travel-control and dev-travel-portal namespaces. See the Kiali dashboards for Mia and John.

As a developer mesh application viewer, you can:

 ► View traces for workloads in your domain. Select Distributed tracing from the Kiali menu at the left side of the dashboard
and log in with your credentials to access the tracing console.

 ► View metrics for workloads in your domain. Select an application workload from the Workloads section to see inbound
and outbound metrics.

 ► View Grafana dashboards for the overall solution. Log in to the Grafana URL using your credentials. You can see the
status and performance of the travel agency solution by selecting Dashboards > Manage > Istio > Istio Mesh Dashboard.

As a developer, you are allowed to view, but not modify, Istio configurations. You are not allowed to view Istio logs. You can
verify that your role-based access controls are configured correctly by trying to view configuration details or logs using the
Istio Config and Workloads options from the left-side menu.

Use the observability stack as the mesh operator
The mesh operator, Emma, has full access to all three data plane namespaces (dev-travel-control, dev-travel-portal,
and dev-travel-agency) and the control plane namespace. See the Kiali dashboard for Emma.

As the mesh operator, you can:

 ► View all namespaces in Kiali. Select Graphs > App Graph > Display from the Kiali menu to show request distributions,
namespace boxes, traffic animation, and security settings.

 ► View logs for all workloads. Select a workload from the Workloads option in the left-side menu. The Logs tab shows both
proxy and pod logs.

 ► View and modify Istio configurations. Select Istio Config from the left-side menu to access and modify any configuration.

 ► View dashboards. Access Prometheus, Jaeger, and Grafana dashboards via the URLs defined earlier in this chapter. Select
Dashboards > Manage > Istio > Istio Control Plane Dashboard to visualize the state of the service mesh control plane. See
the Istio control plane dashboard.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kial-mia-ts-developer.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-john-tp-dev.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/kiali-emma-mesh-operator.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-2-dev-setup/images/grafana-cp-dashboard.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#use-the-observability-stack-as-developer-for-the-travel-portal-or-travel-services-domain
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-2-dev-setup#use-the-observability-stack-as-mesh-operator

15

Introduction

Chapter 1 Chapter 2 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 3

Chapter 3

Production environment set up
In this chapter, we’ll set up the production environment for the travel portal and travel agency teams according to
the requirements shown in Chapter 1. As with the development environment, specific roles need to perform each
task. In this case, the platform admin and mesh operator will set up and configure the production environment. Other
enterprise personas and service mesh roles will have access to specified parts of the observability stack as before.

Production environment set up
This section describes how to set up the production environment. In our example, Phillip and Emma perform these tasks.

Define your cluster login URL
As with the development environment, the platform admin (as the cluster admin role), Phillip, is responsible for setting
up the overall production cluster and platform.

1. Define the cluster URL to allow users to log in:

export CLUSTER_API=<YOUR-CLUSTER-API-URL>

Prepare service mesh operators, namespaces, roles, and users
The platform admin (as the cluster admin role), Phillip, is responsible for setting up the operators, namespaces, and roles within
the development environment. If you do not have separate Red Hat OpenShift clusters for development and production, you
do not need to add the Red Hat OpenShift Service Mesh operators (step 2). Refer to the Map enterprise users to service
mesh roles section in Chapter 1 for details.

1. Change to the production set up directory and log in as Phillip:

cd ossm-heading-to-production-and-day-2/scenario-2-dev-setup
./login-as.sh phillip

IMPORTANT: Skip steps 2 and 3 if you do not have separate development and production clusters.

2. Add the Red Hat OpenShift Service Mesh operators to the cluster via the Red Hat OpenShift marketplace:

../common-scripts/add-operators-subscriptions-sm.sh

3. Create the production service mesh roles as defined in Chapter 1.

4. Create the required production travel agency namespaces:

../common-scripts/create-travel-agency-namespaces.sh prod

5. Create the production environment service mesh users and assign roles as defined in Chapter 1.

https://docs.openshift.com/container-platform/4.10/applications/red-hat-marketplace.html
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#execute-user--role-creation-for-prod-environment
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-1-kick-off-meeting/README.adoc#mapping-enterprise-users-to-roles-in-the-higher-prod-environment
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#setting-up-the-production-environment
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#adding-operators-namespaces-userroles-preparation-actions
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#adding-operators-namespaces-userroles-preparation-actions

16

Introduction

Chapter 1 Chapter 2 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 3

Configure Jaeger, Elasticsearch, and the service mesh control plane for production
The mesh operator, Emma, is responsible for configuring the service mesh control plane and tracing within the production
environment. There are two options for performing these tasks:

 ► Option 1: Minimal Elasticsearch parameters via the control plane

 ► Option 2: Fully customized Elasticsearch parameters via Jaeger configuration

Our example will use option 2 to fully customize the service mesh control plane and tracing deployment. Refer to the following
Jaeger documentation for additional information about configuring an external Jaeger resource:

 ► Understanding custom resource definitions

 ► Command line interface (CLI) flags for jaeger-collector with elasticsearch storage

IMPORTANT: OpenSSL must be installed and accessible in the path to use the example scripts.

1. Configure Jaeger:

./login-as.sh emma

./scripts/create-prod-smcp-1-tracing.sh prod-istio-system production

This script creates a Jaeger resource in the prod-istio-system namespace with the following settings:

 ► Production-focused setup

 ► Elasticsearch for persistent storage

 ► Indexes deleted on a rolling basis after 7 days

 ► One Elasticsearch node

 ► 1Gi Elasticsearch index size

 ► Node resources are requested and limited

 ► No Elasticsearch node redundancy

2. Confirm that the Jaeger resource was created:

oc get jaeger/jaeger-small-production -n prod-istio-system

3. Confirm that all components — a Jaeger collector, a Jaeger query, and an Elasticsearch deployment — were created:

oc get deployment -n prod-istio-system
NAME READY UP-TO-DATE AVAILABLE AGE
elasticsearch-cdm-prodistiosystemjaegersmallproduction-1 1/1 1 1 7m27s
jaeger-small-production-collector 1/1 1 1 7m25s
jaeger-small-production-query 1/1 1 1 7m25s

The create-prod-smcp-1-tracing.sh script also configures the service mesh according to the production requirements
defined in Chapter 1. See the complete YAML file.

 ► 20% of all traces collected for sampling

 ► No external outgoing communications to unregistered hosts allowed

 ► Traces stored in a Jaeger resource within the service mesh

 ► Elasticsearch provides persistence for traces

 ► Integration and use of an external Jaeger resource

https://docs.openshift.com/container-platform/4.8/service_mesh/v2x/ossm-deploy-production.html#ossm-smcp-prod_ossm-architecture
https://docs.openshift.com/container-platform/4.8/service_mesh/v2x/ossm-reference-jaeger.html#ossm-deploying-jaeger-production_jaeger-config-reference
https://www.jaegertracing.io/docs/1.32/operator/#understanding-custom-resource-definitions
https://www.jaegertracing.io/docs/1.36/cli/#jaeger-collector-elasticsearch
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L18
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L25
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L21
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L26
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L28
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L29
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L35
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#configure-servicemeshcontrolplane-tracing-for-production
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L112
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L127
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/create-prod-smcp-1-tracing.sh#L139
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#configure-tracing-for-production

17

Introduction

Chapter 1 Chapter 2 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 3

Configure the data plane and deploy applications into production
The domain owners (as mesh developer roles), Farid and Cristina, are responsible for configuring the data plane and deploying
applications into production. In our example, the service mesh will contain:

 ► An istio-proxy sidecar container, for intercepting all communications into and out of the main application container
and for applying service mesh configurations.

 ► A jaeger-agent sidecar container, to allow multitenancy in our Red Hat OpenShift cluster. See the Jaeger deployment
best practices documentation for more details.

The one-step-add-prod-deployments.sh script allows Farid and Cristina to deploy applications to the travel agency
and travel services domains:

./scripts/one-step-add-prod-deployments.sh <OCP CLUSTER DOMAIN eg. apps.example.com>

If you prefer to deploy applications into production in a step-by-step manner, refer to the Setting up the production
environment section in the online resource repository.

Configure Istio gateway access and security certificates
The mesh operator, Emma, is responsible for configuring an Istio Gateway resource and security certificates to allow access
to the travel agency dashboard. Our example uses a Route resource to expose the travel agency dashboard over transport
layer security (TLS). The certificate is hosted via the control-gateway resource in the ingress gateway, and the route
resource is set to pass-through mode. This allows a separate certificate to be defined for each exposed service, but also
requires additional maintenance, as each certificate must also be rotated separately by the mesh operator role.

Create the Route and Gateway resources and the certificates:

./login-as.sh emma

./scripts/create-https-ingress-gateway.sh prod-istio-system /
 <OCP CLUSTER DOMAIN eg. apps.example.com>

See the resulting travel control dashboard.

Configure Prometheus for production
The mesh operator, Emma, is responsible for configuring Prometheus monitoring for the production environment.
While Red Hat OpenShift offers an observability stack, the current version of Red Hat OpenShift Service Mesh
does not integrate or federate with it. There are several options for getting around this:

 ► Option 1: Enhance the existing Prometheus deployment by adding a persistent volume

 ► Option 2: Create an external Prometheus deployment using the Prometheus operator

 ► Option 3: Collect data plane metrics only via integration with the Red Hat OpenShift monitoring stack

 ► Option 4: Configure and use an external monitoring tool to collect metrics

Our example will use option 1 to extend metric retention to seven days and add a persistent volume for long-term metric storage:

./login-as.sh emma

./scripts/update-prod-smcp-2-option1-prometheus.sh prod-istio-system

Additional information for the other three options is located in the online resource repository.

https://docs.openshift.com/container-platform/4.10/service_mesh/v2x/ossm-reference-jaeger.html#distr-tracing-deployment-best-practices_jaeger-config-reference
https://docs.openshift.com/container-platform/4.10/service_mesh/v2x/ossm-reference-jaeger.html#distr-tracing-deployment-best-practices_jaeger-config-reference
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-3-prod-basic-setup/README-add-prod-deployments.adoc
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-3-prod-basic-setup/README-add-prod-deployments.adoc
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#setup-tls-secured-istio-gateway-to-access-travel-agency-ui
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#option-2---external-prometheus-setup-via-prometheus-operator
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#configure-prometheus-for-production
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#deploying-applications-in-production
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#setup-tls-secured-istio-gateway-to-access-travel-agency-ui
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#configure-prometheus-for-production

18

Introduction

Chapter 1 Chapter 2 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 3

Final service mesh production setup
This section provides the final production setup, including tracing, metrics, scaled control plane components, and runtime
resource allocations. The objectives, principles, and requirements defined in Chapter 1 should guide the final setup and serve
as a starting point for establishing general rules and guidelines for the deployment and use of service mesh IT resources and
assets. In our example, the travel agency architects have revisited and finalized the following service mesh objectives and
architecture principles:

Service mesh objectives

 ► Secure service-to-service communications.

 ► Monitor use and health of service-to-service communications.

 ► Allow teams to work separately to deliver parts of a solution.

Service mesh architecture principles

 ► Use an external configuration mechanism for traffic encryption, authentication, and authorization.

 ► Transparently integrate additional services to expand functionality.

 ► Use an external traffic management and orchestration mechanism.

 ► Configure all components with high availability in mind.

 ► Use observability capabilities to verify system operation, rather than auditing.

Final production service mesh setup

Based on these purposes and principles, here is our final production service mesh setup:

 ► Tracing: 5% of all traces will be sampled and stored for seven days in an Elasticsearch cluster for debug purposes.

 ► Metrics: Collected metrics will be stored for seven days, and archived afterwards to allow for historical comparisons.

 ► Grafana: Grafana will use persistent storage for analytics.

 ► Ingress and egress: Two ingress and two egress pod instances will be deployed for high availability.

 ► Istiod: Two Istiod instances will be deployed for high availability.

The mesh operator, Emma, is responsible for updating the production deployment to meet the finalized requirements:

./login-as.sh emma

./scripts/update-prod-smcp-3-final.sh prod-istio-system production

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/update-prod-smcp-3-final.sh#L112
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/update-prod-smcp-3-final.sh#L168
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/update-prod-smcp-3-final.sh#L140
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-3-prod-basic-setup/scripts/update-prod-smcp-3-final.sh#L194
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#final-service-mesh-production-setup

19

Introduction

Chapter 1 Chapter 2 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 3

Production observability stack use and setup verification
As in the development environment, you should verify the setup of the production environment using the observability stack.
Refer to the Development observability stack use and setup verification section in Chapter 2 for details about verifying
the setup and how each role can use the stack. Chapter 4 will provide details about using the observability stack to tune
service mesh performance and size service mesh components accordingly.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-3-prod-basic-setup#verification--observability-usage

20

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 4

Chapter 4

Onboarding an external travel portal
In this chapter, we’ll connect an external travel portal to Travel by Keyboard’s environment to address a new business opportunity.

Define requirements for the new opportunity
Travel by Keyboard’s business development team has entered into a business deal with an external travel organization,
Global Travel Organization (GTO), that will source offers from Travel by Keyboard’s travel services domain. The following
technical requirements will apply:

 ► The GTO travel portal will connect to Travel by Keyboard’s travel services domain via APIs.

 ► All communications with the external client will be performed over mTLS.

 ► Authentication using a valid JSON web token (JWT) will be used to support additional authorization policies in the future.

Figure 3. Travel by Keyboard’s target service mesh architecture with connections to GTOs travel portal via APIs

Travel agency production service mesh
(Red Hat OpenShift Service Mesh)

istiod Istio ingress
gateway

GTO
gateway

Global Travel Organization (external)

Travel agency
API services

travel-portal
namespace

Voyages.fr

Viaggi.it

Travels.uk

Shop.de

Shop.es

travel-control
namespace

Simulator

travel-agency
namespace

Flights

Hotels

Cars

Insurances

DiscountsTravels

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#requirements-focused-on-new-business-opportunity-setup

21

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 4

Create an additional ingress for API services
The mesh operator, Emma, is responsible for creating the additional Istio ingress gateway and certificates to allow external
access to the travel agency services via mTLS.

1. Define the cluster URL to allow users to log in:

export CLUSTER_API=<YOUR-CLUSTER-API-URL>

2. Create the Istio Route resource, CA root keys and certificates, client/server certificates, and Gateway resource:

cd ossm-heading-to-production-and-day-2/scenario-4-onboard-new-portal-with-authentication
./login-as.sh emma

Add to SMCP production resource in prod-istio-system
 additionalIngress:
 gto-external-ingressgateway:
 enabled: true
 runtime:
 deployment:
 autoScaling:
 enabled: false
 service:
 metadata:
 labels:
 app: gto-external-ingressgateway
 selector:
 app: gto-external-ingressgateway

./scripts/create-external-mtls-https-ingress-gateway.sh prod-istio-system \
 <OCP CLUSTER DOMAIN e.g. apps.example.com>

This creates a new gto-external-ingressgateway pod, a TLS pass-through Route resource for access, and the travel-
api-gateway Istio configuration. The travel-api-gateway Istio configuration defines the mTLS requirement and secrets
that contain the needed certificates and keys.

See the script output: Routes, pods, Istio configuration, and YAML

Deploy the new Istio configuration
The travel services domain owner (as a mesh developer role), Farid, is responsible for deploying the new travel-api
VirtualService Istio configuration into the prod-travel-agency namespace to allow requests from the new gateway
to reach the cars, insurances, flights, hotels, and travels services in the service mesh:

./login-as.sh farid

./scripts/create-client-certs-keys.sh curl-client

./scripts/deploy-external-travel-api-mtls-vs.sh prod prod-istio-system
curl -v -X GET --cacert ca-root.crt --key curl-client.key --cert curl-client.crt \
 https://gto-external-prod-istio-system.apps.<CLUSTERNAME>.<DOMAINNAME>/flights/Tallinn

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-4-onboard-new-portal-with-authentication/images/route-gto-external-ingressgateway.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-4-onboard-new-portal-with-authentication/images/pod-gto-external-ingressgateway.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-4-onboard-new-portal-with-authentication/images/kiali-gw-gto-external.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-4-onboard-new-portal-with-authentication/images/kiali-travel-api-gw-gto-external.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#configure-additional-ingress-for-travel-agency-api-services
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#configure-additional-ingress-for-travel-agency-api-services

22

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 4

Enable JWT authentication
The intended final authentication workflow for GTO requests will use both mTLS handshakes and JWT:

1. The user authenticates with Red Hat Single Sign-On and receives a JWT.

2. The user initiates a request to https://<route>/<service> and passes the JWT with the request. Services can
be cars, insurances, flights, hotels, or travels.

3. The istio-proxy container of the gto-external-ingressgateway pod checks the validity of the JWT token
as defined by the RequestAuthentication object and permissions defined in the AuthorizationPolicy object.

4. If the JWT is valid, the user can access the path. Otherwise, an error message is returned to the user.

This approach is simple — only two custom resources (CRs) need to be deployed — and offers detailed authorization based
on JWT fields. However, it does not use an OpenID Connect workflow, and the user is required to obtain and pass on the
JWT themselves. You also need to define RequestAuthentication and AuthorizationPolicy objects for each
protected application within the service mesh.

Set up Red Hat Single Sign-On
The platform admin (as the cluster admin role), Phillip, is responsible for setting up the Red Hat Single Sign-On server
and mounting the TLS certificate to istiod.

Figure 4. Kiali visualization of the new Istio configuration

This creates a mTLS handshake between the GTO client and the travel agency APIs via the newly created
gto-external-ingressgateway.

https://access.redhat.com/products/red-hat-single-sign-on
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#use-jwt-authentication
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#setup-red-hat-signle-sign-on-server-rhsso

23

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 4

1. Configure the prerequisites for the single sign-on server:

./login-as.sh phillip

./prerequisites-setup.sh <CLUSTERNAME> <BASEDOMAIN> (eg.for apps.ocp4.example.com \
 prerequisites-setup.sh ocp4 example.com)

2. Mount the Red Hat Single Sign-on TLS certificate to istiod:

./scripts/mount-rhsso-cert-to-istiod.sh prod-istio-system production <CLUSTERNAME> <BASEDOMAIN>

Configure authentication and authorization for the gateway
The mesh operator, Emma, is responsible for creating the RequestAuthentication and AuthorizationPolicy objects
to allow access to gto-external-ingressgateway. The RequestAuthentication object will require authentication
and authorization requests to use only JWTs issued by Red Hat Single Sign-On, while the AuthorizationPolicy object
will require JWTs to be issued by Red Hat Single Sign-On to be valid.

./login-as.sh emma
oc -n prod-istio-system apply -f approach_1/yaml/istio/jwt/01_requestauthentication.yaml
oc -n prod-istio-system apply -f \
 approach_1/yaml/istio/jwt/02_authpolicy_allow_from_servicemesh-lab_realm.yaml

This requires all requests coming in via the gto-external route and gto-external-ingressgateway to contain both
a TLS certificate and a valid JWT to be allowed to proceed.

Test travel agency API access using a JWT
Once you have set up authentication and authorization using JWTs, you should test to be sure everything is working
as expected.

1. Ensure that you can no longer access the travel agency services without a valid JWT:

export GATEWAY_URL=$(oc -n prod-istio-system get route gto-external -o jsonpath='{.spec.host}')
curl -v -X GET --cacert ca-root.crt --key curl-client.key --cert curl-client.crt \
 https://$GATEWAY_URL/cars/Tallinn |jq
curl -v -X GET --cacert ca-root.crt --key curl-client.key --cert curl-client.crt \
 https://$GATEWAY_URL/travels/Tallinn |jq
curl -v -X GET --cacert ca-root.crt --key curl-client.key --cert curl-client.crt \
 https://$GATEWAY_URL/flights/Tallinn |jq
curl -v -X GET --cacert ca-root.crt --key curl-client.key --cert curl-client.crt \
 https://$GATEWAY_URL/insurances/Tallinn |jq
curl -v -X GET --cacert ca-root.crt --key curl-client.key --cert curl-client.crt \
 https://$GATEWAY_URL/hotels/Tallinn |jq

HTTP/1.1 403 Forbidden

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#create-requestauthentication-and-authorizationpolicy-to-allow-access-for-gto-external-user-gtouser
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-4-onboard-new-portal-with-authentication#access-gto-external-exposed-travel-agency-apis-with-jwt

24

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 4

2. Retrieve a JWT for user gtouser. Note that bcd06d5bdd1dbaaf81853d10a66aeb989a38dd51 is the CLIENT_SECRET
defined during the Red Hat Single Sign-On client secret creation in our example.

TOKEN=$(curl -Lk --data "username=gtouser&password=gtouser&grant_type=password&client_id=istio\
&client_secret=bcd06d5bdd1dbaaf81853d10a66aeb989a38dd51" \
https://keycloak-rhsso.apps.ocp4.rhlab.de/auth/realms/servicemesh-lab/protocol/openid-connect/token \
| jq .access_token)

echo $TOKEN

3. Use the JWT to access the travel services APIs as gtouser:

./scripts/call-via-mtls-and-jwt-travel-agency-api.sh prod-istio-system gto-external $TOKEN

Figure 5. GTO users can access Travel by Keyboard’s services via the travel services APIs.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/43a8c904f9e989d56ddfba8a95647f5f35ed3827/scenario-4-onboard-new-portal-with-authentication/prerequisites/yaml/rhsso/03_istio-client.yaml#L14

25

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

Chapter 5

Complying with a new security regulation
In this chapter, we’ll refine and enhance service mesh and environment security to address a new security regulation.

Define requirements for the new regulation
A new security regulation has been released, and Travel by Keyboard’s security and product teams have found that they’ll need
to make some changes to comply:

 ► A corporate (intermediate) certificate authority (CA) will be used to create mTLS certificates for intramesh communications.

 ► Additional authorization will be required to access specific services within the mesh.

Implement mTLS across all services
In order to comply with the new security regulation, we will enhance the service mesh to generate and rotate intramesh mTLS
certificates based on a corporate CA and an intermediate CA. In the following sections, we will create the certificates, keys,
and certificate chain; add them to the production service mesh control plane resource; and validate the change.

Create the corporate certificate authority and certificates
The platform admin (as the cluster admin role), Phillip, is responsible for creating the corporate CA and certificates required
in the production environment. Note that your security team would usually provide the CA and certificates in an actual
production scenario.

Change to the Chapter 5 directory and create the CA root, intermediate keys and certificates, and a chain certificate:

cd ossm-heading-to-production-and-day-2/scenario-5-new-regulations-mtls-everywhere

Follow the detailed instructions for creating the root, keys, and certificates in the resource repository.

Update the production service mesh control plane tenant
The mesh operator, Emma, is responsible for modifying the production service mesh control plane tenant to use the new
corporate CA, intermediate CA, and chain certificates.

Start by verifying the issuer of the certificates currently used by the control plane and data plane. In each case, this should
be something like Issuer: O = cluster.local.

1. Verify the issuer of the default service mesh certificate:

./login-as.sh emma
oc get -o yaml secret istio-ca-secret -n prod-istio-system | grep ca-cert | awk '{print $2}' | \
 base64 -d | openssl x509 -noout -text

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-5-new-regulations-mtls-everywhere/README-create-ca-root-and-intermediate-key-certs.adoc
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#requirements-focused-on-authorization-and-corporate-security-setup
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#implement-mtls-across-all-services
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#create-corporate-ca-and-certificate-for-intramesh-mtls-for-production
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#modify-the-production-smcp-tenant-to-use-the-corporate-based-ca-intermediate-ca-and-chain-certificates

26

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

2. Verify the issuer of the certificates used for communication with istiod:

oc exec "$(oc get pod -l app=istio-ingressgateway -n prod-istio-system -o \
 jsonpath={.items..metadata.name})" -c istio-proxy -n prod-istio-system -- openssl s_client \
 -showcerts -connect $(oc get svc istiod-production -o jsonpath={.spec.clusterIP}):15012

3. Verify the issuer of the certificates used in pod-to-pod communications:

oc exec "$(oc get pod -l app=hotels -n prod-travel-agency -o jsonpath={.items..metadata.name})" \
 -c istio-proxy -n prod-travel-agency -- openssl s_client -showcerts -connect \
 $(oc get svc discounts -o jsonpath={.spec.clusterIP}):8000

Next, create a secret named cacerts that contains the ca-cert.pem, ca-key.pem, root-cert.pem, and cert-chain.pem
input files. Additional information can be found in the Red Hat OpenShift documentation.

4. Create the cacerts secret and add the input files:

oc create secret generic cacerts -n prod-istio-system \
 --from-file=ca-cert.pem=certs-resources/intermediate/certs/intermediate.cert.pem \
 --from-file=ca-key.pem=certs-resources/intermediate/private/intermediate.key.pem \
 --from-file=root-cert.pem=certs-resources/certs/ca.cert.pem \
 --from-file=cert-chain.pem=certs-resources/intermediate/certs/ca-chain.cert.pem

In our example, we will have:

 ► intermediate.cert.pem (ca-cert.pem), the certificate for the intermediate CA.

 ► intermediate.key.pem (ca-key.pem), the key for the intermediate CA certificate.

 ► ca.cert.pem (root-cert.pem), the root CA certificate.

 ► ca-chain.cert.pem (cert-chain.pem), the chain that includes both certificates.

The istio-system-ca secret created by the service mesh control plane by default can result in istiod choosing
the incorrect enterprise certificates, so we’ll remove it to avoid interference.

5. Remove the istio-system-ca secret:

oc get secret istio-ca-secret -n prod-istio-system -o yaml > istio-ca-secret-default.yaml
oc delete secret istio-ca-secret -n prod-istio-system

6. Add the cacerts secret to the production service mesh control plane resource in the prod-istio-system namespace:

Add in production SMCP in prod-istio-system
 security:
 certificateAuthority:
 type: Istiod
 istiod:
 type: PrivateKey
 privateKey:
 rootCADir: /etc/cacerts

https://docs.openshift.com/container-platform/4.10/service_mesh/v2x/ossm-security.html#ossm-cert-manage-add-cert-key_ossm-security

27

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

Once you have added the new certificates, you need to restart the control plane and data plane resources to implement
the changes.

7. Restart the control plane istiod and gateway pods:

oc -n prod-istio-system delete pods \
 -l 'app in (istiod,istio-ingressgateway, istio-egressgateway,gto-external-ingressgateway)'
oc -n prod-istio-system get -w pods

8. Restart the data plane pods:

oc -n prod-travel-control delete pods --all
oc -n prod-travel-agency delete pods --all
oc -n prod-travel-portal delete pods --all

9. Verify that the cacerts issuer is Issuer: C = GB, ST = England, L = London, O = Travel Agency Ltd,
OU = Travel Agency Ltd Certificate Authority, CN = Travel Agency Ltd Root CA:

oc get -o yaml secret cacerts -n prod-istio-system | grep ca-cert | awk '{print $2}' \
 | base64 -d | openssl x509 -noout -text

10. Verify that the data plane communications are secured with the new corporate certificates:

./verify-dataplane-certs.sh

11. Verify that the control plane communications are secured with the new corporate certificates:

./verify-controlplane-certs.sh

Disable STRICT mTLS for specific services
Some workloads running in your service mesh may offer their own mTLS certificates, or may not support mTLS.
You can configure your service mesh to handle these situations.

A detailed exercise for disabling mTLS for the cars service is included in the online repository.

Implement new authorization policies
We will also implement new authorization policies to align with the new security regulation. In our example, the mesh
operator (Emma) and domain owners (Cristina and Farid) will restrict access to specific services based on best practices
and business requirements.

Detailed information about authorization is available in the Istio documentation.

Check the default authorization policies
First, confirm that the default service mesh authorization policies allow all communications.

1. Test the control.prod-travel-control communication:

https://travel-prod-istio-system.apps.<CLUSTERNAME>.<BASEDOMAIN>/

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#testing-with-mtls-strict-and-disable-services
https://istio.io/latest/docs/tasks/security/authorization/
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#testing-with-mtls-strict-and-disable-services
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#implement-new-authz-policies
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#service-mesh-default-authz-policy-is-allow-all-communications

28

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

2. Run the script to test the remaining communications:

./scripts/check-authz-all.sh ALLOW prod-istio-system <CLUSTERNAME> <BASEDOMAIN> \
 <CERTS_LOCATION> (CERTS_LOCATION ../scenario-4-onboard-new-portal-with-authentication)

The output should show that all communications are allowed by default:

Authorization prod-istio-system --> prod-travel-agency

[ALLOW] gto-external-ingressgateway --> travels.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> cars.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> flights.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> insurances.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> hotels.prod-travel-agency

Authorization prod-travel-control --> prod-travel-agency

[ALLOW] control.prod-travel-control --> travels.prod-travel-agency
[ALLOW] control.prod-travel-control --> cars.prod-travel-agency
[ALLOW] control.prod-travel-control --> flights.prod-travel-agency
[ALLOW] control.prod-travel-control --> insurances.prod-travel-agency
[ALLOW] control.prod-travel-control --> hotels.prod-travel-agency

Authorization prod-travel-portal --> prod-travel-agency

[ALLOW] viaggi.prod-travel-portal --> travels.prod-travel-agency
[ALLOW] viaggi.prod-travel-portal --> cars.prod-travel-agency
[ALLOW] viaggi.prod-travel-portal --> flights.prod-travel-agency
[ALLOW] viaggi.prod-travel-portal --> insurances.prod-travel-agency
[ALLOW] viaggi.prod-travel-portal --> hotels.prod-travel-agency

Authorization prod-travel-agency --> prod-travel-agency

[ALLOW] travels.prod-travel-portal --> discounts.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> cars.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> flights.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> insurances.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> hotels.prod-travel-agency

Apply a deny-all policy
Best practices for service mesh security use a default-deny pattern. In Chapter 4, we configured the authpolicy-gto-
external resource to allow requests via the gto-external-ingressgateway. Now, we will deny all requests by default
and allow only requests specified by an authorization policy. The domain owners (as mesh developer roles), Farid and Cristina,
can implement these changes.

https://istio.io/latest/docs/ops/best-practices/security/#use-default-deny-patterns
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#apply-deny-all-best-practice-pattern

29

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

1. Apply the default-deny pattern to the prod-travel-control and prod-travel-agency namespaces:

cd ossm-heading-to-production-and-day-2/scenario-5-new-regulations-mtls-everywhere
./login-as.sh cristina
oc apply -f authz-resources/01-default-deny-travel-portal-access.yaml
./login-as.sh farid
oc apply -f authz-resources/01-default-deny-travel-agency-access.yaml

2. Verify that access is denied via web browser. The following link should result in a message saying RBAC: access denied.

https://travel-prod-istio-system.apps.<CLUSTERNAME>.<BASEDOMAIN>/

3. Run the script to check the remaining communications:

./scripts/check-authz-all.sh DENY prod-istio-system <CLUSTERNAME> <BASEDOMAIN> \./scripts/check-authz-all.sh DENY prod-istio-system <CLUSTERNAME> <BASEDOMAIN> \
 <CERTS_LOCATION> (CERTS_LOCATION ../scenario-4-onboard-new-portal-with-authentication) <CERTS_LOCATION> (CERTS_LOCATION ../scenario-4-onboard-new-portal-with-authentication)

The output should show that all communications are denied by default:

Authorization prod-istio-system --> prod-travel-agency

[DENY] gto-external-ingressgateway --> travels.prod-travel-agency
[DENY] gto-external-ingressgateway --> cars.prod-travel-agency
[DENY] gto-external-ingressgateway --> flights.prod-travel-agency
[DENY] gto-external-ingressgateway --> insurances.prod-travel-agency
[DENY] gto-external-ingressgateway --> hotels.prod-travel-agency

Authorization prod-travel-control --> prod-travel-agency

[DENY] control.prod-travel-control --> travels.prod-travel-agency
[DENY] control.prod-travel-control --> cars.prod-travel-agency
[DENY] control.prod-travel-control --> flights.prod-travel-agency
[DENY] control.prod-travel-control --> insurances.prod-travel-agency
[DENY] control.prod-travel-control --> hotels.prod-travel-agency

Authorization prod-travel-portal --> prod-travel-agency

[DENY] viaggi.prod-travel-portal --> travels.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> cars.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> flights.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> insurances.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> hotels.prod-travel-agency

Authorization prod-travel-agency --> prod-travel-agency

[DENY] travels.prod-travel-portal --> discounts.prod-travel-agency
[DENY] travels.prod-travel-portal --> cars.prod-travel-agency
[DENY] travels.prod-travel-portal --> flights.prod-travel-agency
[DENY] travels.prod-travel-portal --> insurances.prod-travel-agency
[DENY] travels.prod-travel-portal --> hotels.prod-travel-agency

You can also verify the communication policies visually via Kiali.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/images/DENY-ALL-KIALI.png

30

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

Apply business-justified authorization policies
Now, we will allow access to specific services and requests based on business needs.

Prod-travel-control namespace

The mesh operator, Emma, is responsible for allowing access to the service mesh via the default istio-ingressgateway:

./login-as.sh emma
oc apply -f authz-resources/02-travel-portal-allow-external-traffic.yaml

Travel portal domain

The travel portal domain owner (as a mesh developer role), Cristina, is responsible for allowing access from the istio-
ingressgateway to the travel portal. We will set the istio-ingressgateway to allow calls on any path, and the principal
cluster.local/ns/prod-istio-system/sa/istio-ingressgateway-service-account will be allowed to make calls
to the prod-travel-control namespace:

./login-as.sh cristina
oc apply -f authz-resources/02-travel-portal-allow-istio-ingressgateway-traffic.yaml

Access to the travel portal interface will be reinstated within a few seconds. As before, you can test the connection
via https://travel-prod-istio-system.apps.<CLUSTERNAME>.<BASEDOMAIN>/.

Travel services domain

The travel services domain owner (as a mesh developer role), Farid, is responsible for allowing access from the gto-
external-ingressgateway to the travels.prod-travel-agency, hotels.prod-travel-agency, cars.prod-
travel-agency, insurances.prod-travel-agency, and flights.prod-travel-agency services so that GTO can
perform search requests. The previous section allowed calls to gto-external-ingressgateway on any path for any external
principal (requestPrincipals[*]). In this section, we will allow only the principal cluster.local/ns/prod-istio-
system/sa/gto-external-ingressgateway-service-account to make calls to the prod-travel-agency namespace.

1. Allow access for GTO:

./login-as.sh farid
oc apply -f authz-resources/03-gto-external-travels-to-travel-agency-allow.yaml

2. Check whether travel searches from GTO are allowed. You should receive an HTTP 500 error with “invalid connection” as
the reason:

TOKEN=$(curl -Lk --data "username=gtouser&password=gtouser&grant_type=password&\
client_id=istio&client_secret=bcd06d5bdd1dbaaf81853d10a66aeb989a38dd51" \
https://keycloak-rhsso.apps.ocp4.rhlab.de/auth/realms/servicemesh-lab/protocol/openid-connect/token \
| jq .access_token)

../scenario-4-onboard-new-portal-with-authentication/scripts/call-via-mtls-and-jwt-travel-agency-api.sh \
 prod-istio-system gto-external $TOKEN

https://istio.io/latest/docs/reference/config/security/authorization-policy/#Source
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#apply-business-justified-authorization-policies

31

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

3. Access from GTO is now authorized and there are no longer 403 errors, but connections are failing. Inspect the
communications in Kiali. You should find that requests from gto-external-ingressgateway to *.prod-travel-
agency are allowed, but that connections from the flights service to the mysqldb service are not allowed.
You can check this in the istio-proxy logs for the flights-v1 workload.

4. Allow communications within the prod-travel-agency namespace so that the principal cluster.local/ns/prod-
travel-agency/sa/default is allowed to make calls to the prod-travel-agency namespace:

./login-as.sh farid
oc apply -f authz-resources/04-intra-travel-agency-allow.yaml

5. Verify that travel searches from GTO are now allowed:

TOKEN=$(curl -Lk --data "username=gtouser&password=gtouser&grant_type=password&\
client_id=istio&client_secret=bcd06d5bdd1dbaaf81853d10a66aeb989a38dd51" \
https://keycloak-rhsso.apps.<CLUSTERNAME>.<BASEDOMAIN>/auth/realms/servicemesh-lab/protocol/openid-connect/token \
| jq .access_token)

../scenario-4-onboard-new-portal-with-authentication/scripts/call-via-mtls-and-jwt-travel-agency-api.sh \
prod-istio-system gto-external $TOKEN

6. Test the intra-namespace communications:

./scripts/check-authz-all.sh 'ALLOW intra' prod-istio-system <CLUSTERNAME> <BASEDOMAIN> \
 <CERTS_LOCATION> (CERTS_LOCATION ../scenario-4-onboard-new-portal-with-authentication)

The output should show the updated communications authorizations:

Authorization prod-istio-system --> prod-travel-agency

[ALLOW] gto-external-ingressgateway --> travels.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> cars.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> flights.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> insurances.prod-travel-agency
[ALLOW] gto-external-ingressgateway --> hotels.prod-travel-agency

Authorization prod-travel-control --> prod-travel-agency

[DENY] control.prod-travel-control --> travels.prod-travel-agency
[DENY] control.prod-travel-control --> cars.prod-travel-agency
[DENY] control.prod-travel-control --> flights.prod-travel-agency
[DENY] control.prod-travel-control --> insurances.prod-travel-agency
[DENY] control.prod-travel-control --> hotels.prod-travel-agency

Authorization prod-travel-portal --> prod-travel-agency

[DENY] viaggi.prod-travel-portal --> travels.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> cars.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> flights.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> insurances.prod-travel-agency
[DENY] viaggi.prod-travel-portal --> hotels.prod-travel-agency

32

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

Authorization prod-travel-agency --> prod-travel-agency

[ALLOW] travels.prod-travel-portal --> discounts.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> cars.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> flights.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> insurances.prod-travel-agency
[ALLOW] travels.prod-travel-portal --> hotels.prod-travel-agency

7. The domain owner (as a mesh developer role), Farid, can then allow the principal cluster.local/ns/prod-travel-
portal/sa/default to make calls to the prod-travel-agency namespace:

./login-as.sh farid
oc apply -f authz-resources/05-travel-portal-to-travel-agency-allow.yaml

Verify authorization policies
The authorization policies applied in the previous sections restored business-justified connections within our
example environment.

Figure 6. Kiali visualization of authorization policies, including business-justified connections

This configuration is different from the allow-all policy we started with in this chapter. The mesh operator, Emma, can verify
that the travel-portal-control namespace still does not have access to the travel-portal-agency namespace:

./login-as.sh emma

./scripts/check-authz-all.sh 'ALLOW intra' prod-istio-system <CLUSTERNAME> <BASEDOMAIN> \
 <CERTS_LOCATION> (CERTS_LOCATION ../scenario-4-onboard-new-portal-with-authentication)

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#non-business-justified-authorization-blocked

33

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 5

Apply detailed authorization policies for the partner portal
In our example, Travel by Keyboard’s business development team has finalized the business agreement with their partner,
GTO. As a result, GTO will be able to source offers only from the flights and insurances services via the travel agency
APIs. In this section, we’ll configure the authorization policy to align with this business agreement. The mesh operator, Emma,
is responsible for configuring the detailed authorization policies.

1. Deny communications from gto-external-ingressgateway to all paths except /flights and /insurances using
the notPaths operation:

./login-as.sh emma
oc apply -f authz-resources/06-gto-external-travels-only-flights-insurances-paths-allow.yaml

2. Check that the correct connections are now allowed:

./scripts/verify-fine-grained-authz.sh prod-istio-system <CLUSTERNAME> <BASEDOMAIN> \
 <CERTS_LOCATION> (CERTS_LOCATION ../scenario-4-onboard-new-portal-with-authentication)

[DENY] GTO --> /travels
[DENY] GTO --> /cars
[ALLOW] GTO --> /flights
[ALLOW] GTO --> /insurances
[DENY] GTO --> /hotels

Figure 7 shows the final authentication and authorization configuration for our example.

Figure 7. Final authentication and authorization configuration for the travel agency service mesh

mTLS communications Corporate certificate Permission(s)

Travel agency production service mesh
(Red Hat OpenShift Service Mesh)

GTO
gatewayistiod Istio ingress

gateway

travel-portal
namespace

Voyages.fr

Viaggi.it

Travels.uk

Shop.de

Shop.es

travel-control
namespace

Simulator

travel-agency
namespace

Flights

Hotels

Cars

Insurances

DiscountsTravels

Global Travel Organization (external)

Travel agency
API services

https://istio.io/latest/docs/reference/config/security/authorization-policy/#Operation
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-5-new-regulations-mtls-everywhere#apply-fine-grained-authz-for-external-gto-portal

34

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 6

Chapter 6

Expanding partnerships and implementing
broker services
In this chapter, we’ll onboard an insurance broker partner and forward certain insurance requests to that partner to offer
premium insurance packages to customers traveling to popular destinations.

Define requirements for the new opportunity
Travel by Keyboard’s business development team has partnered with an external insurance broker, Super Insurance, to offer
additional premium insurance packages to customers. As a result, certain insurance requests will be forward to the partner:

 ► All requests for insurance related to travels to the London, Rome, Paris, Berlin, Munich, and Dublin destinations
will be forwarded to Super Insurance.

 ► All communications with the external partner services will be performed over mTLS.

Figure 8. Travel agency service mesh architecture with connections to an external insurance broker partner system

Travel agency production service mesh
(Red Hat OpenShift Service Mesh)

istiod Istio ingress
gateway

GTO
gateway

Global Travel Organization (external)

Travel agency
API services

travel-portal
namespace

Voyages.fr

Viaggi.it

Travels.uk

Shop.de

Shop.es

travel-control
namespace

Simulator

travel-agency
namespace

Flights

Hotels

Cars

Insurances

DiscountsTravels

Partner service mesh
(Red Hat OpenShift Service Mesh)

partner-broker namespace

Insurances

uri: /insurances/Berlin
uri: /insurances/Dublin
uri: /insurances/London
uri: /insurances/Munich
uri: /insurances/Paris
uri: /insurances/Rome

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-6-partner-agency-multi-mesh#requirements-focused-on-new-business-partnership-setup

35

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 6

Deploy the partner insurance services
First, we need to deploy and configure the service mesh components within Super Insurance’s system. We will perform these
steps as the cluster admin role (Phillip), though the external organization should also have a set of enterprise personas with
similar service mesh roles and responsibilities to those we have set up for Travel by Keyboard.

The cluster admin role will be responsible for deploying the required service mesh components, including:

 ► Deploying the service mesh control plane partner resource in the partner-istio-system namespace.

 ► Creating the premium-broker namespace and adding service mesh membership for the namespace to the partner’s
service mesh control plane.

 ► Deploying the insurance service in the premium-broker namespace.

 ► Enabling traffic routing to the insurance service in the premium-broker namespace.

 ► Verifying that traffic is routed to the partner insurance service.

In our example, we’ll perform all of these tasks using scripts:

cd ossm-heading-to-production-and-day-2/scenario-6-partner-agency-multi-mesh
./login-as.sh phillip

./create-premium-insurance-broker.sh <PARTNER INSURANCE NAMESPACE> \
 <PARTNER ISTIO CP NAMESPACE> <CLUSTER.DOMAIN eg. apps.ocp4.rhlab.de> <PARTNER SMCP NAME>
./create-premium-insurance-broker.sh premium-broker partner-istio-system \
 <CLUSTER.DOMAIN eg. apps.ocp4.example.com> partner

Route requests to the insurance broker partner
Next, we’ll configure Travel by Keyboard’s systems to separate and forward insurance requests for the premium destinations
defined earlier to Super Insurance. There are three options for achieving this, none of which require changes to our
applications:

 ► Option 1: Non-mTLS external insurance service call
This option applies VirtualService and DestinationRule resources to route traffic to the remote service location
and creates a ServiceEntry resource for the remote service destination location.

 ► Option 2: Multitenancy using mTLS without federation
This option uses the egress gateway of the production service mesh to redirect calls to the remote premium-broker/
insurances service, sharing and applying remote certificates at the gateway. An example of this setup is available in
this blog post.

 ► Option 3: Federation between the production mesh and the partner mesh
This option federates the production and partner service mesh instances and imports the partner insurance service
into the production service mesh. Important considerations for planning service mesh federation are included in the
online resource repository.

https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://istio.io/latest/docs/reference/config/networking/destination-rule/
https://www.wonderingtechie.com/post/2022/ossm-security-with-mtls-for-egress-edge-traffic/
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-6-partner-agency-multi-mesh#option-3-federation-between-production-and-partner-mesh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-6-partner-agency-multi-mesh#deploy-the-partner-premium-broker-insurance-services
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-6-partner-agency-multi-mesh#routing-requests-to-premium-insurance-broker-partner

36

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 6

Our example will use option 3 to federate the two service meshes. To do so, we need to:

 ► Update the production service mesh control plane resource to declare two additional gateways — 
partner-mesh-egress and partner-mesh-ingress — for the federated connection.

 ► Update the partner service mesh control plane resource to declare two additional gateways — 
production-mesh-egress and production-mesh-ingress — for the federated connection.

 ► Extract the configuration map istio-ca-root-cert from each of the meshes and share
it on the control plane namespace of the opposite mesh to support the TLS handshake.

 ► Create the partner ServiceMeshPeer resource in prod-istio-system to initiate
the peering from the production mesh to the partner mesh.

 ► Create production ServiceMeshPeer resource in partner-istio-system
to initiate the peering from the partner mesh to the production mesh.

 ► Export the insurances service (via ExportedServiceSet) from the premium-broker namespace
and import it (via ExportedServiceSet) into the prod-travel-agency namespace.

In our example, the cluster admin, Phillip, will perform all of these tasks using a script:

./scripts/option-3-execute-federation-setup.sh <1_SMCP_NAMESPACE> <1_SMCP_NAME> \
 <2_SMCP_NAMESPACE> <2_SMCP_NAME> <PREMIUM NAMESPACE>
./scripts/option-3-execute-federation-setup.sh prod-istio-system production partner-istio-system \
 partner premium-broker

The outcome of this configuration will be that insurance quotes requests arriving at the prod-travel-agency/travels
service will be forwarded to the federated insurances.premium-broker.svc.partner-imports.local service.

Figure 9. Production mesh federating requests to the imported service insurances.premium-broker.svc.partner-imports.local

37

Introduction

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 7 Chapter 8 Chapter 9

Part 2: Day 2 operationsPart 1: Heading to production

Chapter 6

The logs of the insurances.premium-broker pod should show that it serves only the specified premium destinations,
while all others are served by the insurances.prod-travel-agency pod.

Chapter resources
 ► Red Hat OpenShift documentation: Exporting a service from a federated mesh

 ► Blog post: Security options with mTLS for egress edge traffic

 ► Blog post: Federation automated setup

Figure 10. Partner mesh serving requests via exported service insurances.premium-broker to travels-v1.prod-travel-agency
in the production mesh

https://docs.openshift.com/container-platform/4.10/service_mesh/v2x/ossm-federation.html#ossm-federation-config-export_federation
https://www.wonderingtechie.com/post/2022/ossm-security-with-mtls-for-egress-edge-traffic/
https://www.wonderingtechie.com/post/2022/ossm-federation-scripted/

38

Part 2: Day 2 operations
Once you have deployed your service mesh into production, you need to optimize, tune, and maintain it. Day 2 operations are
critical for the ongoing efficiency, stability, and utility of any technology, and service meshes are no different. In Part 1 of this
e-book, we laid the foundations for Day 2 operations by configuring the platform for security, adaptability, and observability.
In Part 2, we’ll explore methods and techniques for troubleshooting, tuning, and upgrading your service mesh.

Chapter 7

Troubleshooting the mesh
In this chapter, we’ll explore several techniques for troubleshooting your service mesh.

Key questions to ask
Each Istio network configuration debugging journey is different, but it helps to start by asking ten key questions:

1. Is the Istio network configuration syntactically valid?

2. Does the network configuration have an error or warning status set?

3. Is the resource name right? Is the resource in the right namespace?

4. Are the resource selectors correct?

5. Did Envoy accept (ACK) the configuration?

6. Did the configuration appear as expected in Envoy?

7. Did istiod (Pilot) log errors?

8. Are the Red Hat OpenShift Service Mesh operator and control plane healthy?

9. Is your application part of the expected mesh instance?

10. Are the relevant certificates valid?

The following sections provide guidance for gathering the information needed to answer each of these questions
and, hopefully, resolve service mesh issues in the process.

Chapter 9Chapter 8Chapter 7

Part 2: Day 2 operations

Chapter 6Chapter 5Chapter 4Chapter 3Chapter 2Chapter 1

Part 1: Heading to productionIntroduction

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#important-troubleshooting-questions-to-ask

39

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 7

Understand the components of your mesh
The first step in nearly every debugging journey is knowing what you’re dealing with. It’s important to understand which mesh
components you have, their purpose, their configurations, and from where those configurations are applied. You also need
to understand the expected flow of traffic in your mesh and which tools your mesh operator and application operations team
personas can use in debugging efforts. In our example, we’ll focus on the following mesh components:

 ► Ingress components that allow traffic into the mesh. In our example, istio-ingressgateway and gto-ingressgateway
carry north inbound client traffic and partner-mesh-ingress carries federated west inbound traffic.

 ► Egress components that allow traffic out of the mesh. In our example, istio-egressgateway carries south outbound
traffic and partner-mesh-egress carries federated east outbound traffic.

 ► istio-proxy sidecar containers — one for each pod that is part of the mesh — that intercept TCP, HTTP, HTTP/2,
and GRPC1 traffic into and out of the main application containers.

 ► istiod components that apply the mesh configurations for traffic, security, observability, and more.

Two of the main actions of a service mesh are to apply Red Hat OpenShift network policies that govern and restrict access
to the mesh and to rewrite the IP tables rules so that each pod can only be accessed via the service mesh istio-proxy
sidecar. The NetworkPolicy resource can enforce mesh isolation and multitenancy to achieve this.

More information about network policies is available in the Red Hat OpenShift documentation:

 ► Multitenancy versus cluster-wide mesh installations

 ► Understanding mesh network policies

 ► Setting the correct network policy

Control plane network policies

In our example, the following NetworkPolicy resources have been applied in the prod-istio-system namespace:

Table 5. NetworkPolicy resource application for the prod-istio-system namespace

Name Pod selector

gto-external-ingressgateway app=gto-external-ingressgateway,istio=ingressgateway

istio-expose-route-production maistra.io/expose-route=true

istio-grafana-ingress app=grafana

istio-ingressgateway app=istio-ingressgateway,istio=ingressgateway

istio-istiod-production app=istiod,istio.io/rev=production

 1 Transmission Control Protocol (TCP), Hypertext Transfer Protocol (HTTP), HTTP/2, and Google Remote Procedure Call (GRPC)

https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-architecture.html
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-architecture.html
https://docs.openshift.com/container-platform/
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-vs-community.html#ossm-mt-vs-clusterwide_ossm-vs-istio
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-traffic-manage.html#ossm-understanding-networkpolicy_traffic-management
https://docs.openshift.com/container-platform/4.11/service_mesh/v1x/prepare-to-deploy-applications-ossm.html#ossm-config-network-policy_deploying-applications-ossm-v1x
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#understanding-what-is-involved

40

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 7

Name Pod selector

istio-jaeger-ingress app.kubernetes.io/component in (all-in-one,query),
app.kubernetes.io/instance=jaeger-small-production,
app.kubernetes.io/managed-by=jaeger-operator,
app.kubernetes.io/part-of=jaeger

istio-kiali-ingress app=kiali

istio-mesh-production <none>

istio-prometheus-ingress app=prometheus

partner-mesh-ingress app=partner-mesh-ingress,
federation.maistra.io/ingress-for=partner-mesh-ingress,
istio=ingressgateway

Data plane network policies

The following NetworkPolicy resources have been applied in the data plane namespaces:

Table 6. NetworkPolicy resource application for the data plane namespaces

Name Pod selector

istio-expose-route-production maistra.io/expose-route=true

istio-mesh-production <none>

istio-proxy ports and purposes

Finally, these are the key ports exposed by istio-proxy and their purpose:

 ► 15001: Carry traffic out of the sidecar towards the main workload container, or as traffic response/request
from the workload container

 ► 15006: Carry traffic into the sidecar

 ► 15000: Access diagnostics

 ► 15020: Access merged Prometheus telemetry from the Istio agent, Envoy, and application

More information about the ports used by Istio is available on the Istio website.

Check your mesh configurations
While there are many resources that provide configurations for the service mesh, only the istiod component applies
the configurations to the data plane and istio-proxy sidecars. The mesh operator, Emma, can use the istioctl
CLI tool to see and troubleshoot the states of the currently applied configurations.

https://istio.io/latest/docs/ops/deployment/requirements/#ports-used-by-istio
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#checking-configurations

41

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 7

Check whether the configurations been applied
First, check that the service mesh configurations have actually been applied.

1. Use the analyze command to check for errors in the overall service mesh configurations. Note that this can take a long time
for very large data planes.

istioctl analyze

2. Check that XDS protocol of the discovery services for the service mesh Envoy proxy are in sync between the control plane
and data plane:

istioctl proxy-status istio-ingressgateway-6b948db88c-2sqth -i prod-istio-system \
 -n prod-istio-system

or

istioctl proxy-status -i prod-istio-system -n prod-istio-system

Confirm which configurations have been applied and where
If you suspect that configurations may be missing, misplaced, or simply wrong, you can use the observability stack and CLI
tools to investigate.

1. Use Kiali to visualize your Istio configurations in each namespace and see any validation errors.

2. Check the ServiceMeshControlPlane resource and workload deployment for any configurations that have been added
to enhance or override the expected configurations. More information about Istio proxy annotations is available on the Istio
website and in the Red Hat OpenShift documentation.

3. Verify that the workload is part of the service mesh and is a member of the correct mesh:

 ► Validate sidecar injection for your workload.

 ► Check that the maistra.io/member-of label of the namespace that contains the workload points to the correct
control plane namespace.

4. Use Prometheus to check for traffic type issues. Check that the istio_agent_pilot_duplicate_envoy_clusters
and istio_agent_pilot_destrule_subsets metrics are greater than 0, and check for duplicates. This can often solve
issues reported as “no healthy upstream.”

5. Generate a readout of the pod and service exposed ports and applied Istio configurations using Kiali or istioctl.

 ► In Kiali, select the workload you want to view from the Workloads section.

 ► Use the describe command in the istioctl CLI:

istioctl experimental describe pod cars-v1-594b79cfbf-wlcg9.prod-travel-agency -i \
prod-istio-system -n prod-travel-agency

Detailed configuration analysis
A detailed configuration analysis and debugging exercise is available in the online repository. You can also find
more information in the Debugging Envoy and Istiod section of the Istio documentation.

https://kiali.io/docs/features/configuration/
https://istio.io/latest/docs/reference/config/annotations/
https://istio.io/latest/docs/reference/config/annotations/
https://docs.openshift.com/container-platform/4.9/service_mesh/v2x/prepare-to-deploy-applications-ossm.html#ossm-sidecar-injection-env-var_deploying-applications-ossm
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/prepare-to-deploy-applications-ossm.html#ossm-validating-sidecar_deploying-applications-ossm
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#configuration-analysis-deep-dive
https://istio.io/latest/docs/ops/diagnostic-tools/proxy-cmd/
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#what-configurations-and-where-have-they-been-applied
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#configuration-analysis-deep-dive
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#have-the-configurations-been-applied

42

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 7

Check runtime health and security
When you experience runtime issues in your service mesh, it’s important to check the health of both the control plane
and data plane. The mesh operator, Emma, and the mesh developers, Farid and Cristina, can use Kiali, Jaeger, and
Prometheus to investigate the health of the components within their respective domains.

Check control plane health
The mesh operator, Emma, can check the control plane health.

1. Verify the installation of your service mesh operators and check your control plane installation.

2. Check the istiod logs for all instances:

oc logs -f istiod-production-<POD-HASH>

Check data plane health
The mesh developers, Farid and Cristina, can check the data plane health within their respective domains.

1. Use Kiali to see overview and detailed views of the health and state of applications, Istio configurations, services,
and workloads.

2. Use Jaeger to identify potential health issues.

3. Use Prometheus to query Envoy and application metrics. Additional information about using metrics in Prometheus
is available in the online repository.

4. Enhance istio-proxy logging levels for additional insight. You can view the expanded content in Kiali or via the oc CLI.

 ► Enable Envoy access logs for your entire service mesh, including istio-proxy containers and ingress/egress gateways.

 ► Check current istio-proxy logging levels:

./istioctl proxy-config log <POD NAME>

 ► Apply new levels as needed:

./istioctl proxy-config log <POD NAME> --level http2:debug,grpc:debug

Be sure to consider possible response flags when parsing the resulting logs. It may also be necessary to configure
ingress access logging to get a complete view of the incoming traffic flows.

Check security health
As service mesh security requirements become more complex, it’s important to ensure that the certificates used for
authentication and traffic encryption are correct and valid.

1. In Chapter 5, we defined two scripts — verify-controlplane-certs.sh and verify-dataplane-certs.sh — 
that verify these certificates. The mesh operator, Emma, can use these scripts to ensure that the expected certificates
are in place.

https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-troubleshooting-istio.html#troubleshooting-operator-installation
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-troubleshooting-istio.html#troubleshooting-the-control-plane
https://kiali.io/docs/features/health
https://kiali.io/docs/features/details/
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#health-checking-the-dataplane
https://istio.io/latest/docs/reference/config/metrics/
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#health-checking-the-dataplane
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/service_mesh/index#enabling-envoy-access-logs
https://github.com/skoussou/openshift-service-mesh-application-troubleshooting/blob/main/TROUBLESHOOTING-ACTIONS.adoc#appendix-e-response-flags
https://github.com/skoussou/openshift-service-mesh-application-troubleshooting/blob/main/TROUBLESHOOTING-ACTIONS.adoc#appendix-f-envoy-logs-parsing
https://docs.openshift.com/container-platform/4.10/networking/ingress-operator.html#nw-configure-ingress-access-logging_configuring-ingress
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-5-new-regulations-mtls-everywhere/scripts/verify-controlplane-certs.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-5-new-regulations-mtls-everywhere/scripts/verify-dataplane-certs.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#health-checking-the-controlplane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#health-checking-the-dataplane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#security-health-checking
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-7-mesh-troubleshooting#checking-runtime-health--security

43

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 8 Chapter 9

Part 2: Day 2 operations

Chapter 7

2. You can also install and use the ksniff community tool to verify how TLS is applied at the traffic level:

WORKLOAD="istio-egressgateway-8598cbf7cb-nl68z"
NAMESPACE="istio-system-egressgw-mtls-client"
oc sniff $WORKLOAD -p -n $NAMESPACE -o output.pcap

3. Check your istiod logs for possible issues with provided certificates. For example, the log readout below shows a common
error that occurs when the intermediate CA key is password-protected:

2022-09-16T11:50:06.830472Z error failed to create discovery service: failed to create CA:
failed to create an istiod CA: failed to create CA KeyCertBundle (failed to parse private key PEM:
failed to parse the RSA private key)

Error: failed to create discovery service: failed to create CA: failed to create an istiod CA:
failed to create CA KeyCertBundle (failed to parse private key PEM: failed to parse the RSA private
key)

Chapter resources
 ► Istio documentation: How does Envoy-based tracing work?

 ► Istio documentation: Debugging Envoy and Istiod

 ► Red Hat Developer: Service Mesh Troubleshooting Tools

 ► Red Hat Customer Portal: Packet capture inside Pod using community ksniff with OpenShift 4

 ► Red Hat Customer Portal: Consolidated Troubleshooting Article OpenShift Service Mesh 2.x

https://asciinema.org/a/361823
https://istio.io/latest/about/faq/#how-envoy-based-tracing-works
https://istio.io/latest/docs/ops/diagnostic-tools/proxy-cmd/
https://acidonper.github.io/rh-service-mesh-v2-troubleshooting/rh-service-mesh-v2-troubleshooting/07-tools.html
https://access.redhat.com/articles/5436111
https://access.redhat.com/articles/6802731

44

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 9

Part 2: Day 2 operations

Chapter 8

Chapter 8:

Tuning the service mesh
In this chapter, we’ll explore techniques for tuning your service mesh.

Define desired outcomes for your tuning efforts
Travel by Keyboard’s application and platform teams have provided non-functional requirements and desired outcomes
for tuning the service mesh.

Application team requirements

The application team — including the product owner, technical lead, and mesh developer roles — need to tune the mesh
from the application aspect to handle the expected customer load. In this case, the expected load is 250,000 requests
per day with a peak of 250 requests per second (rps).

Platform team requirements

The platform team — including the cluster operator, mesh operator, and platform (application ops) roles — need to tune the
mesh from the control plane aspect to optimize observability, ingress/egress application runtime, and configurations. In our
example, the platform team wants to define the best practices, sizing guides, and benchmarks for assessing and improving the
service mesh to deliver the best possible experience to project teams. To do this, they want to answer the following questions:

 ► How do we define the maximum capacity of a Red Hat OpenShift Service Mesh instance?

 ► How do we define the maximum number of applications that can join the mesh in the future?

 ► Which criteria and metrics should we use to govern and assess capacity?

 ► What are the current control plane and data plane limits of a Red Hat OpenShift Service Mesh instance?

Understand service mesh tuning prerequisites
The objectives, architecture principles, and production setup of your service mesh determine the type of tuning required.
For our example, we have defined these aspects in the Final service mesh production setup section of Chapter 3.

In cloud-based environments, there are many components — firewalls, load balancers, container platforms, and more — 
that should be tuned. In our example, however, we will focus on tuning two primary areas:

 ► The data plane: Consists of all istio-proxy (Envoy) sidecars and ingress and egress gateway components, and
is responsible for handling workloads’ incoming traffic.

 ► The control plane: Includes the istiod service and the observability stack. The control plane is responsible for keeping
proxies updated with the latest configurations and certificates.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#service-mesh-tuning-requirements
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#service-mesh-tuning-focus

45

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 9

Part 2: Day 2 operations

Chapter 8

The following sections provide guidance for testing the performance of your service mesh, measuring sizing needs,
and overall tuning options.

Size the service mesh data plane
The application team needs to tune the data plane components — ingress and egress workloads and istio-proxy
sidecars — for memory, CPU, and threads to meet the latency and throughput targets defined earlier. Correctly sizing the
service mesh data plane requires testing a set of scenarios based on actual expected load. Different configurations should
be load tested, assessed, and adapted until the desired performance outcome is reached.

A detailed data plane tuning exercise is available in the online resource repository. In the example, we configure the mesh
for testing; test the default data plane values, tune istio-proxy threads, CPU resources, MEM resources, and the mysql
database; and finally test the tuned configurations.

Monitoring the data plane
To make informed decisions about sizing, you need to monitor specific aspects of the data plane. Istio defines a set of metrics
that allow you to monitor HTTP, HTTP/2 GRPC, and TCP traffic. Key metrics include:

 ► istio_requests_total, a counter that measures the total number of requests.

 ► istio_request_duration_milliseconds, a distribution that measures the latency of requests.

You can also monitor these metrics using Grafana and Kiali, and set Prometheus alerts against them to help tune the data
plane. Additional details about these metrics are available in the online resource repository.

Finally, you can retrieve information about the CPU and memory of the istio-proxy and main workload containers using the
containers-mem-cpu.sh script provided in the detailed data plane tuning exercise. As with the Istio metrics, you can also
access these through Prometheus.

Data plane tuning recommendations
While each tuning exercise is different, we recommend considering the following as a start.

Availability considerations

 ► Check pod priority and preemption, as most important pods have scheduling priority.

 ► Configure liveness, readiness, and startup probes.

 ► Ensure that you set realistic compute resources for containers, using the known limits for each container, and configure
the horizontal pod autoscaler (HPA) accordingly.

 ► Check your deployment strategy selection.

 ► Configure and tune managed application and database connection pools.

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#practical-data-plane-tuning-exercise
https://istio.io/latest/docs/reference/config/metrics/#metrics
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-8-mesh-tuning/images/gto-external-ingressgateway-grafana-graph.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-8-mesh-tuning/images/gto-external-ingressgateway-kiali-metrics.png
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#what-to-monitor-in-the-data-plane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/blob/main/scenario-8-mesh-tuning/scripts/containers-mem-cpu.sh
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#practical-data-plane-tuning-exercise
https://docs.openshift.com/container-platform/4.11/nodes/pods/nodes-pods-autoscaling.html
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#sizing-the-data-plane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#what-to-monitor-in-the-data-plane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#data-plane-tuning-advice

46

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 9

Part 2: Day 2 operations

Chapter 8

Proxy (Envoy) considerations

 ► Increase application concurrency when it is too thin to improve throughput.

 ► Upgrade traffic to HTTP2 to multiplex several requests over the same connection and avoid the overhead associated
with creating new connections.

 ► Tune the client pool connections via Istio DestinationRules configurations to improve the performance of the network.

 ► Ensure that only the required configurations are sent to each proxy to avoid unneeded overhead in both the data plane
and the control plane.

High-throughput workloads place additional demands upon your service mesh and can benefit from additional tuning.
The online resource repository includes additional information about tuning for high-throughput demands.

Size the service mesh control plane
The goal of tuning the control plane is to ensure that it can support the data plane effectively, handle some amount
of expanded data plane capacity, and provide the required resources for the observability stack. The online resource
repository includes additional information about tuning the control plane, as well as detailed tuning exercises.

Monitoring the control plane
As with the data plane, metrics are key to tuning your control plane. Istio also provides metrics that help with control plane
tuning. Key metrics include:

 ► pilot_xds, the number of endpoints connected to istiod using xDS, or simply the number of clients that need to be kept
up-to-date by the control plane.

 ► pilot_xds_pushes, the count of xDS messages sent, including build and send errors.

 ► pilot_proxy_convergence_time, the time it takes to push new configurations to Envoy proxies (in milliseconds).

istiod tuning recommendations
Because one of the core functions of the control plane is to support the data plane, you need to adapt your istiod tuning
when your data plane size increases significantly, for example by hundreds of pods. In this scenario, we recommend that you:

1. Review the deployment model of your service mesh, as a different model may better suit your new requirements.

2. Apply the Sidecar resource to allow separated visibility of resource configurations for unrelated namespaces within
the same mesh.

3. Adjust the HPA settings for istiod components to allow for a predefined increase in the number of xDS clients.

Capacity planning for the observability stack
Your observability stack setup will also impact control plane sizing and tuning. Capacity planning for the observability
stack involves sizing your runtime components — including Kiali, Jaeger, ElasticSearch, Prometheus, and Grafana — and the
associated long-term storage for metric, graph, and trace persistence. These capacity requirements are directly dependent

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#tuning-for-high-throughput-demands
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#sizing-the-control-plane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#istiod-sizing
https://istio.io/latest/docs/reference/commands/pilot-discovery/#metrics
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/ossm-deployment-models.html
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#sizing-the-control-plane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#istiod-metrics-to-monitor
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#istiod-tuning-advice
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#observability-stack-sizing

47

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 9

Part 2: Day 2 operations

Chapter 8

upon the size of your data plane, the number of incoming requests, and the capture and retention settings for metrics and
traces. The online resource repository includes a detailed observability stack tuning exercise in which we check the final
production setup for our example, and adjust the settings to align with the established non-functional requirements.

Tune across service mesh layers
We have provided guidance for uncovering capacity needs and basic tuning. However, to fine-tune your service mesh,
you also need to consider aspects that cross both the control plane and data plane layers. A detailed understanding of
these aspects — for example, TLS settings for communication into and out of clusters, service-to-service communication
requirements, and bootstrapping configurations — is needed to create a stable set of benchmarks for fine-tuning.

Chapter resources

istio-proxy metrics

 ► Istio documentation: Proxy-level metrics

 ► Istio documentation: Istio standard metrics

 ► Istio documentation: Envoy statistics

 ► Envoy documentation: Statistics overview

istiod metrics

 ► Istio documentation: Exported metrics

Observability stack

 ► Kiali documentation: Prometheus tuning

 ► Istio documentation: Using Prometheus for production-scale monitoring

Mesh Performance Testing Resources

 ► IstioCon presentation: Scaling to 1M RPS with multicluster Istio

 ► Tool: Locust load-testing tool

Sizing and Tuning Practices

 ► Istio documentation: Performance and scalability

 ► Istio blog: Best practices: Benchmarking Service Mesh performance

 ► Red Hat OpenShift documentation: Optimizing networking

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#prometheus-sizing
https://istio.io/latest/docs/concepts/observability/#proxy-level-metrics
https://istio.io/latest/docs/reference/config/metrics/
https://istio.io/latest/docs/ops/configuration/telemetry/envoy-stats/
https://www.envoyproxy.io/docs/envoy/latest/operations/stats_overview
https://istio.io/latest/docs/reference/commands/pilot-discovery/#metrics
https://kiali.io/docs/configuration/p8s-jaeger-grafana/prometheus/#prometheus-tuning
https://istio.io/latest/docs/ops/best-practices/observability/#using-prometheus-for-production-scale-monitoring
https://events.istio.io/istiocon-2022/sessions/scaling-to-1m-rps-with-multi-cluster-istio/
https://locust.io/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/v1.10/blog/2019/performance-best-practices/
https://docs.openshift.com/container-platform/4.11/scalability_and_performance/optimizing-networking.html
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-8-mesh-tuning#tuning-across-service-mesh-layers

48

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Part 2: Day 2 operations

Chapter 9

Chapter 9:

Upgrading your service mesh to a new version
In this chapter, we’ll explore how to upgrade your service mesh to a new version.

Identify which versions you currently use
When creating a service mesh upgrade plan of action, it’s important to understand which service mesh component versions
you currently use. Details about versions are provided in the Understanding Service Mesh versions and How versioning
affects Service Mesh upgrades sections of the Red Hat OpenShift documentation.

Red Hat OpenShift Service Mesh contains four components that are affected by versioning:

 ► The Red Hat OpenShift Service Mesh operator.

 ► The Red Hat OpenShift Service Mesh control plane.

 ► The data plane sidecar image.

 ► The observability stack component operators.

Red Hat OpenShift Service Mesh operator version
The Red Hat OpenShift Service Mesh operator version determines:

 ► The pod image used to operate the mesh.

 ► Which versions of certain components — like Istio, Envoy Proxy, Jaeger, and Kiali — are included by default.

 ► Which Red Hat OpenShift Service Mesh control plane versions are supported.

 ► Which custom resource definitions (CRDs) are supported.

Identify the current Red Hat OpenShift Service Mesh operator in our example:

oc -n prod-istio-system get csv|grep servicemesh

Red Hat OpenShift Service Mesh control plane version
The Red Hat OpenShift Service Mesh control plane version determines the availability and configuration of control plane
features. It also determines which version of Red Hat OpenShift Service Mesh will be used and, as a result, what the Red Hat
OpenShift Service Mesh operator will deploy. An update to the control plane version affects the versions of all control plane
components — including ingress and egress gateways and istiod — and the version of the sidecar image injected into data
plane pods.

The latest Red Hat OpenShift Service Mesh operator currently supports multiple control plane versions, so it will not
automatically update supported versions, and you may not need to update your control plane version in conjunction
with an upgrade to your Red Hat OpenShift Service Mesh operator. More information about control plane versions
is available in the Upgrading the control plane section of the Red Hat OpenShift documentation.

https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/upgrading-ossm.html#ossm-versions_ossm-upgrade
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/upgrading-ossm.html#how-versioning-affects-service-mesh-upgrades
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/upgrading-ossm.html#how-versioning-affects-service-mesh-upgrades
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/servicemesh-release-notes.html#new-features-red-hat-openshift-service-mesh-version-2-2-3
https://github.com/maistra/istio-operator/tree/maistra-2.3/resources/helm/v2.3/istio-init/files
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/upgrading-ossm.html#upgrading-control-plane
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#service-mesh-versions
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#the-ossm-operator-version
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#the-servicemeshcontrolplane-version

49

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Part 2: Day 2 operations

Chapter 9

Observability stack component operator versions
Red Hat OpenShift Service Mesh relies on the Jaeger, ElasticSearch, Prometheus, and Kiali components to provide
observability for the mesh. The Red Hat OpenShift Service Mesh operator and control plane versions determine which
versions of the observability components are required. Additionally, the resources that each of the observability component
operators manage must be compatible with the installed version of that operator. As a result, these resources will need to be
updated in conjunction with operator upgrades.

Upgrade your service mesh
Based on the version dependencies, a service mesh upgrade incorporates both mandatory and optional component upgrades.

Table 7. Required and optional component upgrades for a service mesh upgrade

Component Upgrade need

Red Hat OpenShift Service Mesh operator Mandatory upgrade

Observability component operators Mandatory upgrade

Red Hat OpenShift Service Mesh control plane Optional upgrade

Sidecar image (via restart) Optional upgrade

Upgrade the Red Hat OpenShift Service Mesh operator
Red Hat OpenShift automatically creates a new installation plan whenever a new catalog source containing new operator
versions is installed. If you selected manual update approvals during the initial Red Hat OpenShift installation, you will need
to manually accept the installation plan to start the update. Information and additional resources regarding upgrades in
disconnected environments is available in the online resource repository.

Once the installation plan has been either automatically or manually accepted, the upgrade procedure is started. First, the
operators are upgraded. Then all control plane components are restarted to receive the new Red Hat OpenShift Service Mesh
operator version into the current control plane version. The new Red Hat OpenShift Service Mesh operator version becomes
active only after the control plane is upgraded.

Upgrade the control plane
The next step is to upgrade the control plane. To do so, you need to update the version field (.spec.version) of the control
plane resource:

$ oc patch smcp <control_plane_name> --type json \
 --patch '[{"op": "replace","path":"/spec/version","value":"v2.2"}]'

Then, all control plane components — ingress and egress gateways and istiod — are restarted automatically and upgraded
to the newest version images. Verify that the new control plane version is deployed:

$ oc get smcp -n istio-system

https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#appendix---operator-in-disconnected-environment
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#appendix---operator-in-disconnected-environment
https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/upgrading-ossm.html#ossm-upgrading-operator_ossm-upgrade
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#the-observability-operators-version
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#upgrading-activities
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#upgrading-ossm-operator
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#control-plane-upgrade

50

Introduction Part 1: Heading to production

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Part 2: Day 2 operations

Chapter 9

Upgrade the data plane
Next, it’s time to upgrade the application sidecar containers and Envoy proxies and configurations. To do so, restart
the application pods:

$ oc rollout restart deployment $DEPLOYMENT-NAME

Chapter resources
 ► Red Hat OpenShift documentation: Upgrading Service Mesh

 ► Red Hat OpenShift documentation: Updating sidecar proxies

https://docs.openshift.com/container-platform/4.11/service_mesh/v2x/upgrading-ossm.html
https://docs.openshift.com/container-platform/4.9/service_mesh/v2x/prepare-to-deploy-applications-ossm.html#ossm-update-app-sidecar_deploying-applications-ossm
https://github.com/redhat-developer-demos/ossm-heading-to-production-and-day-2/tree/main/scenario-9-mesh-upgrade#data-plane-upgrade

Copyright © 2023 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or
registered trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries.

206057_0123_KVM

About Stelios Kousouris, Senior Applications Architect
With 20 years of experience in delivering software solutions, Stelios Kousouris has always been interested in bringing business
solutions into production and optimizing software runtimes. He currently focuses on understanding how Red Hat OpenShift
Service Mesh networking and the Serverless deployment paradigm can be best utilized, and guides teams in application
modernizations for cloud environments.

About Ortwin Schneider, Principal Product Marketing Manager
Ortwin Schneider has more than 20 years of professional experience in developing individual software solutions for various
industries. In the past, he led an agile development team, supporting customers to provide business value and sustain agility.
He is highly interested in software architectures that use hybrid cloud and cloud-native models. Ortwin is currently working as
Principal Technical Marketing Manager at Red Hat on the Red Hat OpenShift team, focusing on creating cloud-native solution
patterns.

	TOC

	GitHub link:
	GitHub link 2:
	GitHub link 3:
	GitHub link 4:
	GitHub link 5:
	GitHub link 6:
	GitHub link 7:
	GitHub link 8:
	GitHub link 9:
	GitHub link 10:
	GitHub link 11:
	GitHub link 12:
	GitHub link 13:
	GitHub link 14:
	GitHub link 15:
	GitHub link 16:
	GitHub link 17:
	GitHub link 18:
	GitHub link 19:
	GitHub link 20:
	GitHub link 21:
	GitHub link 22:
	GitHub link 23:
	GitHub link 24:
	GitHub link 25:
	GitHub link 26:
	GitHub link 27:
	GitHub link 28:
	GitHub link 29:
	GitHub link 30:
	GitHub link 31:
	GitHub link 33:
	GitHub link 32:
	GitHub link 34:
	GitHub link 35:
	GitHub link 36:
	GitHub link 37:
	GitHub link 38:
	GitHub link 39:
	GitHub link 40:
	GitHub link 41:
	GitHub link 42:
	GitHub link 43:
	GitHub link 44:
	GitHub link 45:
	GitHub link 46:
	GitHub link 47:
	GitHub link 48:
	GitHub link 49:
	GitHub link 50:
	GitHub link 51:
	GitHub link 53:
	GitHub link 54:
	GitHub link 52:
	GitHub link 56:
	GitHub link 57:
	GitHub link 58:
	GitHub link 55:
	GitHub link 59:
	GitHub link 60:
	GitHub link 61:
	GitHub link 62:
	GitHub link 63:
	GitHub link 64:
	GitHub link 65:
	GitHub link 66:
	GitHub link 67:
	GitHub link 68:
	GitHub link 69:
	GitHub link 70:
	GitHub link 71:
	GitHub link 72:
	GitHub link 73:
	GitHub link 74:
	GitHub link 75:
	GitHub link 76:

