
1

Table of contents

Challenges of inference serving

A full-stack approach to inference performance

A dual approach to model efficiency

What is Red Hat AI?

Optimizing models with Red Hat

1: Optimizing the inference runtime (vLLM)

2: Optimizing the AI model

Red Hat AI

Next steps

Introduction 3

9

10

18

14

12

12

22

18

20

4

7

Key terms at a glance

The evolution of large language models

3

Introduction

Optimizing AI model inference is among the most effective ways to cut infrastructure costs,
reduce latency, and improve throughput, especially as organizations deploy large models
in production.

This e-book introduces the fundamentals of inference performance engineering and model
optimization, with a focus on quantization, sparsity, and other techniques that help reduce
compute and memory requirements, as well as runtime systems like Virtual Large Language Model
(vLLM), which offer benefits for efficient inference.

It also outlines the advantages of using Red Hat’s open approach, validated model repository , and
tools such as the LLM Compressor and Red Hat® AI Inference Server. Whether you’re running on
graphics processor units (GPUs), Tensor Processing Units (TPUs), or other accelerators, this guide
offers practical insight to help you build smarter, more efficient AI inference systems.

3

44

Key terms at a glance

Activations
are temporary data generated as a model processes
information (input tokens), similar to intermediate
results produced during a calculation. They typically
require high precision for accurate results.

Weights
are the learned parameters or settings of an AI model,
much like configuration files or settings in traditional
software. They determine how the model analyzes
and predicts data and can often function effectively at
reduced precision.

Understanding model components

55

Quantization reduces the size and resource requirements of AI models by storing their parameters (weights)
and intermediate data (activations) in lower precision formats, using fewer bits per value. This technique helps
manage resources efficiently, similar to compressing files on a computer. Done correctly, it does not significantly
degrade the performance of the model.

Quantization

1	 Laboone, Maxime. “Introduction to Weight Quantization.” towards data science, 7 July 2023.

2 “AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration.” GitHub, accessed 8 Aug. 2025.

3 Turganbay, Raushan. “Unlocking Longer Generation with Key-Value Cache Quantization.” Hugging Face, 16 May 2024.

Precision levels at 16-bit, 8-bit, and 4-bit quantization:

•	 4-bit (INT4) significantly
shrinks the model size and
memory requirements, allowing
for deployment on fewer
resources; however, it can
introduce noticeable accuracy
degradation unless carefully
managed with advanced
quantization methods.

•	 8-bit (FP8/INT8)
reduces memory usage by
approximately half compared
to 16-bit, providing substantial
efficiency gains while
preserving model accuracy.

•	 16-bit (FP16/BF16) is
standard precision, preserving
accuracy but demanding
significant memory, making it
costly for very large models.

•	 KV cache quantization
shrinks the memory footprint
of cached key value tensors,
helping models handle long
prompts and concurrent
requests more efficiently.³

•	 Activation quantization
minimizes the memory
requirements of intermediate
outputs (temporary data)
during inference, making
execution faster and
more efficient.²

•	 Weight quantization reduces
the storage size of the
model’s parameters, allowing
more efficient use of
memory during inference.¹

https://developers.redhat.com/articles/2024/10/17/we-ran-over-half-million-evaluations-quantized-llms
https://developers.redhat.com/articles/2024/10/17/we-ran-over-half-million-evaluations-quantized-llms
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
https://github.com/mit-han-lab/llm-awq
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/

66

Sparsity reduces computational demands by intentionally setting
some of the model’s parameters to 0, allowing systems to bypass
unnecessary operations—like skipping blank sections on a form.
This improves speed and efficiency without needing to fully retrain
the model.

2:4 sparsity is a structured approach that sets exactly 2 out of
every 4 parameters to 0, allowing specialized hardware to quickly
identify and efficiently bypass blocks of these inactive parameters,
saving calculation time, which results in faster performance.

Reducing computational load with sparsity

https://developers.redhat.com/articles/2024/12/18/24-sparse-llama-fp8-sota-performance-nvidia-hopper-gpus

77

Large language models (LLMs), primarily built upon transformer architectures, have evolved from
research experiments to foundational tools powering real-world applications. Their scale—often
reaching tens or hundreds of billions of parameters—allow for high levels of reasoning, creativity,
and domain specificity. They do so through a process called inference.

Inference is the procedure by which a trained model processes new input data and generates an
output, such as predicting the next word in a sentence or identifying an object in an image. Unlike
training, which involves learning from large datasets, inference is focused on applying that learned
knowledge to make real-time decisions. As such, inference must be fast and efficient, especially
when models are deployed in production environments to support interactive applications, real-
time analysis, or large-scale automation.

Inference models process input data such as text, images, or audio as tokens, passing them
through multilayer transformer architectures to generate predictions. Tokens are the discrete units
into which input data is broken before being processed by a model. In text-based models, tokens
can represent individual characters, subwords, or entire words, depending on the tokenization
strategy used.

The evolution of
large language
models

88

These models pass input tokens through deep, multilayer transformer architectures
that apply a sequence of mathematical operations to analyze context, weigh
relationships, and determine likely outputs. Each layer refines the model’s
understanding of the input, ultimately producing a prediction, 1 token at a time.
This step-by-step token generation allows for highly accurate and contextually
appropriate outputs, but also contributes to the computational intensity of
inference workloads, especially for large models with many layers.

Beyond text-based LLMs, similar architectures now underpin a range of AI domains,
including vision models and multimodal systems. Vision models apply the same
principles of token-based transformer computation to images and video. Instead
of breaking text into tokens, pixel data is converted into embeddings. These
embeddings capture spatial patterns, edges, textures, and relationships between
visual elements, allowing the model to perform tasks such as image classification,
object detection, segmentation, and visual question answering. When deployed in
production, vision models can support use cases such as automated inspection,
medical imaging, and content moderation.

As organizations adopt AI more broadly, model architectures continue to grow in
size and complexity. New approaches such as mixture of experts (MoE) aim to
scale performance by activating only parts of the model per inference, reducing the
overall compute required. These innovations open the door to even more powerful
models while helping balance performance with cost and energy demands.

Regardless of size, all models require efficient serving and optimization to be
practical in production, making inference performance engineering a critical priority
for organizations looking to deploy models.

99

Serving inference for large models presents several challenges.

Models with billions of parameters require substantial GPU memory to store their weights and
intermediate states, such as key-value (KV) caches. As the number of concurrent requests or the
length of the inputs increase, memory constraints become critical bottlenecks, limiting the model’s
throughput and responsiveness. Basic serving methods often struggle with inefficient batching
techniques, leading to underutilized hardware resources and increased latency.

Furthermore, implementations of attention mechanisms in transformer architectures can be
computationally intensive, especially with long inputs, which significantly slows down response
times. Addressing these challenges demands sophisticated runtime optimizations such as efficient
memory management, advanced batching strategies, and optimized attention mechanisms such
as paged attention. Together, these help to increase performance and responsiveness in real-
world applications.

Challenges of
inference serving

10

A full-stack approach
to inference
performance

10

Inference optimization refers to the process of improving how efficiently an AI model
runs once deployed in production. Running LLMs in production can quickly become
expensive, especially when dealing with high token volumes, long prompts, and growing
usage demands. Cost optimization in inference comes down to reducing memory
consumption, increasing throughput, and minimizing hardware needs, without
sacrificing accuracy or user experience.

While model training is generally a single-instance task (barring exceptions for model
retraining), inference happens constantly, generating real-time outputs in response
to user inputs. For LLMs and vision models, inference can quickly become the most
expensive and resource-intensive part of an AI deployment, especially when scaled
across hybrid or global infrastructure.

Effectively serving LLMs at scale requires a comprehensive, full-stack optimization
strategy that addresses both the model itself and the serving runtime. While we are
primarily looking at optimizing model parameters through quantization and sparsity,
additional performance gains can be realized by refining the inference serving process
through techniques such as chunked prefill,⁴ prefix caching,⁵ speculative decoding,⁶
and disaggregated prefill and decode.⁷

4	 ”Optimization and Tuning.” vLLM, 7 Aug. 2025.

5 “What is Automatic Prefix Caching?” vLLM, accessed 8 Aug. 2025.

6 “How Speculative Decoding Boosts vLLM Performance by up to 2.8x.” vLLM, 17 Oct. 2024.

7 Du, Kuntai. “vLLM Office Hours - Disaggregated Prefill and KV Cache Storage in vLLM - November 14, 2024.” YouTube, 18 Nov. 2024.

https://developers.redhat.com/articles/2024/10/17/we-ran-over-half-million-evaluations-quantized-llms
https://developers.redhat.com/articles/2025/02/28/24-sparse-llama-smaller-models-efficient-gpu-inference
https://docs.vllm.ai/en/latest/configuration/optimization.html
https://docs.vllm.ai/en/v0.5.3/automatic_prefix_caching/apc.html
https://blog.vllm.ai/2024/10/17/spec-decode.html
https://www.youtube.com/watch?v=FPr37jCOvrA
https://docs.vllm.ai/en/latest/configuration/optimization.html#chunked-prefill_1
https://docs.vllm.ai/en/v0.5.3/automatic_prefix_caching/apc.html
https://blog.vllm.ai/2024/10/17/spec-decode.html
https://www.youtube.com/watch?v=FPr37jCOvrA

11

Since basic runtimes are a bottleneck, serving large models efficiently requires
choosing the right inference runtime. Popular runtimes include:

•	 vLLM. Virtual large language model is a library of open source code maintained
by the vLLM community. It helps LLMs perform calculations more efficiently
and at scale. Specifically, vLLM is an inference server that speeds up the output
of gen AI applications by making better use of the GPU memory. It is widely
adopted across the industry because of its superior throughput and low-latency
performance, helped by innovations like paged attention, which allows more
tokens to be processed efficiently in GPU memory.

•	 Triton. Often mistaken for a standalone runtime, Triton functions more as
a front-end application programming interface (API) for various backend
engines, including TensorRT and vLLM. While Triton with TensorRT may
offer slightly higher performance on NVIDIA GPUs, it comes at the cost of
increased set-up complexity and limited model support. Customers often
report that achieving performance gains with Triton takes significantly
more effort than with vLLM.

•	 SGLang. A newer entry, SGLang is derived from vLLM, and optimized for
specific use cases. It uses many of the same underlying components as
vLLM but supports fewer model architectures. While it may outperform
vLLM in narrow contexts, its limited flexibility and community support
make it less attractive for broad enterprise adoption.

Overview of inference runtimes and model formats

1212

As mentioned in the last chapter, serving LLMs efficiently can be challenging
due to limitations inherent in basic inference serving methods.

These runtime limitations include inefficient GPU memory usage, suboptimal
batch processing, and slow token generation. Runtimes typically store intermediate
computation data, such as KV caches, inefficiently, consuming extensive GPU
memory and limiting the capacity for concurrent requests. Furthermore, simplistic
batching strategies can leave GPUs idle or underutilized, significantly reducing
throughput. Additionally, basic runtimes struggle with slow attention mechanisms,
causing extended latency when handling long input sequences.

Runtime limitations

A dual approach to
model efficiency
1: Optimizing the inference runtime (vLLM)

13

vLLM addresses many runtime challenges by providing advanced
techniques specifically optimized for inference performance:

•	 Continuous batching. vLLM minimizes GPU idle time by
concurrently processing tokens from multiple incoming requests.
Instead of handling a single request at a time, it groups tokens
from different sequences into batches, significantly improving
GPU utilization and inference throughput.

•	 PagedAttention. vLLM uses a novel memory management
strategy called PagedAttention, efficiently handling large-
scale KV caches. This technique dynamically allocates and
manages GPU memory pages, greatly increasing the number
of concurrent requests and supporting significantly longer
sequences without memory bottlenecks.

For an in-depth exploration, read this technical blog about vLLM.

Comprehensive integration capabilities: vLLM can directly
load models from popular repositories such as Hugging Face and
serves as a high-performance backend within frameworks like Triton
Inference Server. Its compatibility with a wide variety of hardware
platforms, including NVIDIA GPUs, AMD GPUs, and Google TPUs,
further simplifies enterprise-scale deployment.

Standardization and vendor agnosticism: By using a widely
adopted runtime such as vLLM, organizations gain standardization
benefits, which support reliable performance across diverse hardware
environments and avoid lock-in to proprietary solutions.

For a deeper understanding of vLLM’s parallelism techniques, visit
this technical deep dive blog.

Why vLLM

vLLM deployment benefits

https://www.redhat.com/en/blog/meet-vllm-faster-more-efficient-llm-inference-and-serving
https://www.redhat.com/en/blog/red-hat-ai-inference-server-technical-deep-dive

14

One of the main challenges in production is managing memory and compute
efficiency. Large models often require vast amounts of GPU memory to store
parameters and context in the KV cache, particularly when dealing with long
prompts or multiple concurrent requests. If models aren’t optimized, they can
run inefficiently, leading to higher operational costs. Latency is another critical
concern: users expect real-time responses, and delays caused by large model
size or inefficient execution can negatively affect experience and the efficacy of
downstream workflows.

Compressing a model helps address some of the most significant challenges
organizations face when deploying AI at scale: cost efficiency and performance
optimization.

As models increase in size to billions of parameters, serving them in production
becomes resource-intensive, demanding extensive memory and compute power.
Model compression techniques, including quantization and sparsity, slightly reduce
the precision and number of parameters, while significantly lowering the memory
footprint and compute requirements without substantially sacrificing accuracy. By
compressing models, organizations can run AI workloads more efficiently, using
fewer GPUs or other accelerators, thus dramatically cutting operational costs and
allowing for faster inference, which is essential for applications that require
real-time responses.

The importance of optimizing large
language models

Why compress a model

2: Optimizing the AI model

15

One of the most effective ways to reduce these costs is to compress your model. Compression techniques such
as quantization and sparsity shrink model size and reduce compute requirements, allowing inference workloads to
run on fewer or smaller GPUs.

Quantization optimizes a model by reducing the precision of its numerical values—specifically, the model’s
weights and activations. Typically, models operate at 16-bit precision (or even 32-bit precision), using formats
such as FP16 or BF16.

Quantization compresses these values to lower precision formats such as 8-bit (INT8 or FP8) or even 4-bit
integers (INT4). This process significantly reduces the memory needed to store model parameters, allowing
models such as a 70-billion parameter Llama to shrink from approximately 140 GB to as low as 40 GB. Such
reductions not only free up memory for additional computations, but also enhance throughput, especially in
memory-bound situations. For example, a GPU with 48 GB of VRAM will handle a 40 GB model faster than a 140
GB one.

However, aggressive quantization can affect accuracy due to precision loss. To mitigate this, fine-grained
quantization employs scaling factors that preserve model accuracy, often achieving less than 1% degradation.
Quantization can double computational throughput by optimizing hardware usage, thus significantly decreasing
latency and operational costs.

How can my model be cost-optimized for inference?

16

Sparsity optimizes a model by introducing a structured reduction
of parameters—essentially setting a large proportion of the model’s
weights to 0. This technique works by identifying and eliminating
redundant or less critical weights, simplifying computations during
inference. Sparsity can substantially reduce model complexity,
thereby decreasing memory usage and computational load, allowing
faster inference and lower operational costs.

However, achieving sparsity effectively requires retraining the
model—a computationally intensive step that demands significant
upfront resources. Sparsity’s efficiency depends on the hardware
capabilities, such as semistructured sparsity supported by modern
accelerators like GPUs, where specific patterns of zeroed weights
enable faster computations. The key advantage is its ability to
reduce computational requirements significantly when properly
implemented.

While sparsity can yield notable benefits, particularly when combined
with other optimization methods like quantization, it typically requires
a more involved optimization process. Therefore, it’s recommended
for scenarios with extensive scale or specialized hardware setups.
By carefully applying sparsity, organizations can improve inference
efficiency, but due to the complexity involved, quantization is more
commonly recommended as the primary optimization technique.

By adopting compression workflows and validated runtimes,
organizations can better manage operational costs, support
scalability, and prepare for future increases in AI usage without
overcommitting infrastructure resources.

17

While model compression techniques like quantization and sparsity reduce memory
and compute requirements, they are specifically designed to maintain acceptable
levels of accuracy. For example, 8-bit quantization typically delivers near-baseline
accuracy while halving memory consumption. Even 4-bit models can retain strong
performance when optimized using advanced quantization techniques like weight
rounding and calibration. Structured sparsity patterns, such as 2:4 sparsity, allow
hardware accelerators to skip redundant operations without degrading output
quality. In many production scenarios, teams achieve significant resource savings
with minimal or no reduction in model performance. Testing and validation remain
essential, but for most applications, well-implemented compression yields high-
efficiency inference with accuracy intact.

Will accuracy be compromised?

18

Red Hat AI

Red Hat AI is a platform that accelerates AI innovation and reduces
the operational cost of developing and delivering AI solutions across
hybrid cloud environments. It simplifies integration with private data,
helps reduce costs with optimized models and efficient inference, and
accelerates delivery of agentic AI workflows with a scalable,
flexible platform.

Red Hat AI allows organizations to manage and monitor the lifecycle
of both predictive and gen AI models at scale, from single-server
deployments to highly scaled distributed platforms. The platform
is powered by open source technologies and a partner ecosystem
focused on performance, stability, and GPU support across
various infrastructures.

What is Red Hat AI?

19

•	 Optimized and validated
models. Pre-evaluated and
performance-tested models
to reduce the burden of
testing and fine-tuning.

•	 LLM Compressor. A toolkit
that helps users apply
quantization and compression
to popular models, reducing
resource requirements for
inference without losing
accuracy.

•	 Model customization.
Tools to fine-tune or adapt
foundation models to specific
enterprise needs.

•	 High-performance inference
runtime. An optimized
vLLM-based runtime using
advanced batching and memory
management techniques for
efficient, scalable, and reliable
model serving.

•	 Flexible and consistent
scaling. Infrastructure
support that makes sure there
is flexibility and consistency
when scaling AI across hybrid
cloud environments.

•	 Accelerated agentic
AI delivery. Capabilities
designed to rapidly deploy
advanced, autonomous
AI systems, keeping
organizations at the forefront
of AI innovation.

•	 LLMOps. Practices and tools
that streamline the deployment,
monitoring, and management
of LLMs in production
environments.

•	 AI safety and evaluations.
Frameworks and methodologies
for assessing model accuracy,
fairness, and robustness,
making sure AI deployments are
responsible and reliable.

Red Hat AI includes includes:

Red Hat AI helps organizations optimize AI models through advanced techniques designed to balance efficiency,
accuracy, and cost-effectiveness.

Red Hat AI emphasizes 2 primary aspects of model optimization: efficient runtime and compressed models. By
combining these approaches, Red Hat’s AI portfolio delivers rapid inference performance while reducing the
required computational resources. Specifically, the Red Hat AI Inference Server employs continuous batching
and memory-efficient methods, making sure that models process more tokens per second, achieving greater
throughput with less GPU usage.

Red Hat AI LLM Compressor provides a standardized approach to applying the compression techniques
discussed in this e-book, and aims to deliver optimization with 99% retained accuracy. It helps users generate
optimized versions of popular models that are tuned for inference runtimes such as vLLM. This makes it easier to
run high-performing, compressed models on a wider variety of hardware setups.

Optimizing models with Red Hat AI

20

21

Red Hat AI provides extensive validation to help organizations confidently select, deploy, and scale optimized
models. Given the wide range of available LLMs, organizations often face challenges identifying models that best
align with their use cases in terms of accuracy, performance, and cost efficiency. To address these challenges,
Red Hat AI uses open-source validation tools (such as GuideLLM, Language Model Evaluation Harness, and
vLLM) to rigorously benchmark model performance across multiple evaluation tasks. This validation supports
reproducibility and informed model selection, reducing complexity and uncertainty.

Red Hat AI also offers capacity guidance to help organizations accurately plan AI infrastructure and optimize the
use of resources, addressing common issues such as hardware underuse, high compute costs, and inefficiencies
at inference time. This combination of validated models, optimized deployment settings, and tailored hardware
recommendations allows organizations to enhance flexibility, accelerate deployments, and achieve predictable
performance while managing costs effectively.

With compression techniques and optimized runtimes, Red Hat AI makes it practical to deploy LLMs at scale,
equipping teams to meet rising demands while maintaining control over cost, complexity, and the use of
compute assets.

22

Next steps

Ready to reduce the cost and complexity of serving LLMs? Learn more about
Red Hat AI Inference Server or connect with your Red Hat representative to get started.

© 2025 Red Hat, Inc. Red Hat, and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

https://www.redhat.com/en/products/ai/inference-server

