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Introduction

Optimizing AI model inference is among the most effective ways to cut infrastructure costs, 
reduce latency, and improve throughput, especially as organizations deploy large models 
in production.

This e-book introduces the fundamentals of inference performance engineering and model 
optimization, with a focus on quantization, sparsity, and other techniques that help reduce 
compute and memory requirements, as well as runtime systems like Virtual Large Language Model 
(vLLM), which offer benefits for efficient inference.

It also outlines the advantages of using Red Hat’s open approach, validated model repository , and 
tools such as the LLM Compressor and Red Hat® AI Inference Server. Whether you’re running on 
graphics processor units (GPUs), Tensor Processing Units (TPUs), or other accelerators, this guide 
offers practical insight to help you build smarter, more efficient AI inference systems.
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Key terms at a glance

Activations 
are temporary data generated as a model processes 
information (input tokens), similar to intermediate 
results produced during a calculation. They typically 
require high precision for accurate results.

Weights 
are the learned parameters or settings of an AI model, 
much like configuration files or settings in traditional 
software. They determine how the model analyzes 
and predicts data and can often function effectively at 
reduced precision.

Understanding model components
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Quantization reduces the size and resource requirements of AI models by storing their parameters (weights) 
and intermediate data (activations) in lower precision formats, using fewer bits per value. This technique helps 
manage resources efficiently, similar to compressing files on a computer. Done correctly, it does not significantly 
degrade the performance of the model.

Quantization

1	 Laboone, Maxime. “Introduction to Weight Quantization.” towards data science, 7 July 2023.

2   “AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration.” GitHub, accessed 8 Aug. 2025.

3   Turganbay, Raushan. “Unlocking Longer Generation with Key-Value Cache Quantization.” Hugging Face, 16 May 2024.

Precision levels at 16-bit, 8-bit, and 4-bit quantization:

•	 4-bit (INT4) significantly 
shrinks the model size and 
memory requirements, allowing 
for deployment on fewer 
resources; however, it can 
introduce noticeable accuracy 
degradation unless carefully 
managed with advanced 
quantization methods.

•	 8-bit (FP8/INT8) 
reduces memory usage by 
approximately half compared 
to 16-bit, providing substantial 
efficiency gains while 
preserving model accuracy.

•	 16-bit (FP16/BF16) is 
standard precision, preserving 
accuracy but demanding 
significant memory, making it 
costly for very large models.

•	 KV cache quantization 
shrinks the memory footprint 
of cached key value tensors, 
helping models handle long 
prompts and concurrent 
requests more efficiently.³

•	 Activation quantization 
minimizes the memory 
requirements of intermediate 
outputs (temporary data) 
during inference, making 
execution faster and 
more efficient.²

•	 Weight quantization reduces 
the storage size of the 
model’s parameters, allowing 
more efficient use of 
memory during inference.¹

https://developers.redhat.com/articles/2024/10/17/we-ran-over-half-million-evaluations-quantized-llms
https://developers.redhat.com/articles/2024/10/17/we-ran-over-half-million-evaluations-quantized-llms
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
https://github.com/mit-han-lab/llm-awq
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c/
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Sparsity reduces computational demands by intentionally setting 
some of the model’s parameters to 0, allowing systems to bypass 
unnecessary operations—like skipping blank sections on a form.  
This improves speed and efficiency without needing to fully retrain 
the model.

2:4 sparsity is a structured approach that sets exactly 2 out of 
every 4 parameters to 0, allowing specialized hardware to quickly 
identify and efficiently bypass blocks of these inactive parameters, 
saving calculation time, which results in faster performance.

Reducing computational load with sparsity

https://developers.redhat.com/articles/2024/12/18/24-sparse-llama-fp8-sota-performance-nvidia-hopper-gpus
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Large language models (LLMs), primarily built upon transformer architectures, have evolved from 
research experiments to foundational tools powering real-world applications. Their scale—often 
reaching tens or hundreds of billions of parameters—allow for high levels of reasoning, creativity, 
and domain specificity. They do so through a process called inference.

Inference is the procedure by which a trained model processes new input data and generates an 
output, such as predicting the next word in a sentence or identifying an object in an image. Unlike 
training, which involves learning from large datasets, inference is focused on applying that learned 
knowledge to make real-time decisions. As such, inference must be fast and efficient, especially 
when models are deployed in production environments to support interactive applications, real-
time analysis, or large-scale automation. 

Inference models process input data such as text, images, or audio as tokens, passing them 
through multilayer transformer architectures to generate predictions. Tokens are the discrete units 
into which input data is broken before being processed by a model. In text-based models, tokens 
can represent individual characters, subwords, or entire words, depending on the tokenization 
strategy used. 

The evolution of 
large language 
models
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These models pass input tokens through deep, multilayer transformer architectures 
that apply a sequence of mathematical operations to analyze context, weigh 
relationships, and determine likely outputs. Each layer refines the model’s 
understanding of the input, ultimately producing a prediction, 1 token at a time. 
This step-by-step token generation allows for highly accurate and contextually 
appropriate outputs, but also contributes to the computational intensity of 
inference workloads, especially for large models with many layers.

Beyond text-based LLMs, similar architectures now underpin a range of AI domains, 
including vision models and multimodal systems. Vision models apply the same 
principles of token-based transformer computation to images and video. Instead 
of breaking text into tokens, pixel data is converted into embeddings. These 
embeddings capture spatial patterns, edges, textures, and relationships between 
visual elements, allowing the model to perform tasks such as image classification, 
object detection, segmentation, and visual question answering. When deployed in 
production, vision models can support use cases such as automated inspection, 
medical imaging, and content moderation.

As organizations adopt AI more broadly, model architectures continue to grow in 
size and complexity. New approaches such as mixture of experts (MoE) aim to 
scale performance by activating only parts of the model per inference, reducing the 
overall compute required. These innovations open the door to even more powerful 
models while helping balance performance with cost and energy demands.

Regardless of size, all models require efficient serving and optimization to be 
practical in production, making inference performance engineering a critical priority 
for organizations looking to deploy models.
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Serving inference for large models presents several challenges.

Models with billions of parameters require substantial GPU memory to store their weights and 
intermediate states, such as key-value (KV) caches. As the number of concurrent requests or the 
length of the inputs increase, memory constraints become critical bottlenecks, limiting the model’s 
throughput and responsiveness. Basic serving methods often struggle with inefficient batching 
techniques, leading to underutilized hardware resources and increased latency.

Furthermore, implementations of attention mechanisms in transformer architectures can be 
computationally intensive, especially with long inputs, which significantly slows down response 
times. Addressing these challenges demands sophisticated runtime optimizations such as efficient 
memory management, advanced batching strategies, and optimized attention mechanisms such 
as paged attention. Together, these help to increase performance and responsiveness in real-
world applications.

Challenges of 
inference serving
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A full-stack approach 
to inference 
performance

10

Inference optimization refers to the process of improving how efficiently an AI model 
runs once deployed in production. Running LLMs in production can quickly become 
expensive, especially when dealing with high token volumes, long prompts, and growing 
usage demands. Cost optimization in inference comes down to reducing memory 
consumption, increasing throughput, and minimizing hardware needs, without 
sacrificing accuracy or user experience.

While model training is generally a single-instance task (barring exceptions for model 
retraining), inference happens constantly, generating real-time outputs in response 
to user inputs. For LLMs and vision models, inference can quickly become the most 
expensive and resource-intensive part of an AI deployment, especially when scaled 
across hybrid or global infrastructure.

Effectively serving LLMs at scale requires a comprehensive, full-stack optimization 
strategy that addresses both the model itself and the serving runtime. While we are 
primarily looking at optimizing model parameters through quantization and sparsity, 
additional performance gains can be realized by refining the inference serving process 
through techniques such as chunked prefill,⁴ prefix caching,⁵ speculative decoding,⁶ 
and disaggregated prefill and decode.⁷

4	 ”Optimization and Tuning.” vLLM, 7 Aug. 2025.

5   “What is Automatic Prefix Caching?” vLLM, accessed 8 Aug. 2025.

6   “How Speculative Decoding Boosts vLLM Performance by up to 2.8x.” vLLM, 17 Oct. 2024.

7    Du, Kuntai. “vLLM Office Hours - Disaggregated Prefill and KV Cache Storage in vLLM - November 14, 2024.” YouTube, 18 Nov. 2024.

https://developers.redhat.com/articles/2024/10/17/we-ran-over-half-million-evaluations-quantized-llms
https://developers.redhat.com/articles/2025/02/28/24-sparse-llama-smaller-models-efficient-gpu-inference
https://docs.vllm.ai/en/latest/configuration/optimization.html
https://docs.vllm.ai/en/v0.5.3/automatic_prefix_caching/apc.html
https://blog.vllm.ai/2024/10/17/spec-decode.html
https://www.youtube.com/watch?v=FPr37jCOvrA
https://docs.vllm.ai/en/latest/configuration/optimization.html#chunked-prefill_1
https://docs.vllm.ai/en/v0.5.3/automatic_prefix_caching/apc.html
https://blog.vllm.ai/2024/10/17/spec-decode.html
https://www.youtube.com/watch?v=FPr37jCOvrA
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Since basic runtimes are a bottleneck, serving large models efficiently requires 
choosing the right inference runtime. Popular runtimes include:

•	 vLLM. Virtual large language model is a library of open source code maintained 
by the vLLM community. It helps LLMs perform calculations more efficiently 
and at scale. Specifically, vLLM is an inference server that speeds up the output 
of gen AI applications by making better use of the GPU memory. It is widely 
adopted across the industry because of its superior throughput and low-latency 
performance, helped by innovations like paged attention, which allows more 
tokens to be processed efficiently in GPU memory.

•	 Triton. Often mistaken for a standalone runtime, Triton functions more as 
a front-end application programming interface (API) for various backend 
engines, including TensorRT and vLLM. While Triton with TensorRT may 
offer slightly higher performance on NVIDIA GPUs, it comes at the cost of 
increased set-up complexity and limited model support. Customers often 
report that achieving performance gains with Triton takes significantly 
more effort than with vLLM.

•	 SGLang. A newer entry, SGLang is derived from vLLM, and optimized for 
specific use cases. It uses many of the same underlying components as 
vLLM but supports fewer model architectures. While it may outperform 
vLLM in narrow contexts, its limited flexibility and community support 
make it less attractive for broad enterprise adoption.

Overview of inference runtimes and model formats
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As mentioned in the last chapter, serving LLMs efficiently can be challenging 
due to limitations inherent in basic inference serving methods.

These runtime limitations include inefficient GPU memory usage, suboptimal 
batch processing, and slow token generation. Runtimes typically store intermediate 
computation data, such as KV caches, inefficiently, consuming extensive GPU 
memory and limiting the capacity for concurrent requests. Furthermore, simplistic 
batching strategies can leave GPUs idle or underutilized, significantly reducing 
throughput. Additionally, basic runtimes struggle with slow attention mechanisms, 
causing extended latency when handling long input sequences.

Runtime limitations

A dual approach to 
model efficiency
1: Optimizing the inference runtime (vLLM)
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vLLM addresses many runtime challenges by providing advanced 
techniques specifically optimized for inference performance:

•	 Continuous batching. vLLM minimizes GPU idle time by 
concurrently processing tokens from multiple incoming requests. 
Instead of handling a single request at a time, it groups tokens 
from different sequences into batches, significantly improving 
GPU utilization and inference throughput. 

•	 PagedAttention. vLLM uses a novel memory management 
strategy called PagedAttention, efficiently handling large-
scale KV caches. This technique dynamically allocates and 
manages GPU memory pages, greatly increasing the number 
of concurrent requests and supporting significantly longer 
sequences without memory bottlenecks.

For an in-depth exploration, read this technical blog about vLLM.

Comprehensive integration capabilities: vLLM can directly 
load models from popular repositories such as Hugging Face and 
serves as a high-performance backend within frameworks like Triton 
Inference Server. Its compatibility with a wide variety of hardware 
platforms, including NVIDIA GPUs, AMD GPUs, and Google TPUs, 
further simplifies enterprise-scale deployment.

Standardization and vendor agnosticism: By using a widely 
adopted runtime such as vLLM, organizations gain standardization 
benefits, which support reliable performance across diverse hardware 
environments and avoid lock-in to proprietary solutions.

For a deeper understanding of vLLM’s parallelism techniques, visit 
this technical deep dive blog.

Why vLLM

vLLM deployment benefits

https://www.redhat.com/en/blog/meet-vllm-faster-more-efficient-llm-inference-and-serving
https://www.redhat.com/en/blog/red-hat-ai-inference-server-technical-deep-dive
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One of the main challenges in production is managing memory and compute 
efficiency. Large models often require vast amounts of GPU memory to store 
parameters and context in the KV cache, particularly when dealing with long 
prompts or multiple concurrent requests. If models aren’t optimized, they can 
run inefficiently, leading to higher operational costs. Latency is another critical 
concern: users expect real-time responses, and delays caused by large model 
size or inefficient execution can negatively affect experience and the efficacy of 
downstream workflows.

Compressing a model helps address some of the most significant challenges 
organizations face when deploying AI at scale: cost efficiency and performance 
optimization.

As models increase in size to billions of parameters, serving them in production 
becomes resource-intensive, demanding extensive memory and compute power. 
Model compression techniques, including quantization and sparsity, slightly reduce 
the precision and number of parameters, while significantly lowering the memory 
footprint and compute requirements without substantially sacrificing accuracy. By 
compressing models, organizations can run AI workloads more efficiently, using 
fewer GPUs or other accelerators, thus dramatically cutting operational costs and 
allowing for faster inference, which is essential for applications that require 
real-time responses.

The importance of optimizing large 
language models

Why compress a model

2: Optimizing the AI model
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One of the most effective ways to reduce these costs is to compress your model. Compression techniques such 
as quantization and sparsity shrink model size and reduce compute requirements, allowing inference workloads to 
run on fewer or smaller GPUs.

Quantization optimizes a model by reducing the precision of its numerical values—specifically, the model’s 
weights and activations. Typically, models operate at 16-bit precision (or even 32-bit precision), using formats 
such as FP16 or BF16.

Quantization compresses these values to lower precision formats such as 8-bit (INT8 or FP8) or even 4-bit 
integers (INT4). This process significantly reduces the memory needed to store model parameters, allowing 
models such as a 70-billion parameter Llama to shrink from approximately 140 GB to as low as 40 GB. Such 
reductions not only free up memory for additional computations, but also enhance throughput, especially in 
memory-bound situations. For example, a GPU with 48 GB of VRAM will handle a 40 GB model faster than a 140 
GB one.

However, aggressive quantization can affect accuracy due to precision loss. To mitigate this, fine-grained 
quantization employs scaling factors that preserve model accuracy, often achieving less than 1% degradation. 
Quantization can double computational throughput by optimizing hardware usage, thus significantly decreasing 
latency and operational costs.

How can my model be cost-optimized for inference?
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Sparsity optimizes a model by introducing a structured reduction 
of parameters—essentially setting a large proportion of the model’s 
weights to 0. This technique works by identifying and eliminating 
redundant or less critical weights, simplifying computations during 
inference. Sparsity can substantially reduce model complexity, 
thereby decreasing memory usage and computational load, allowing 
faster inference and lower operational costs.

However, achieving sparsity effectively requires retraining the 
model—a computationally intensive step that demands significant 
upfront resources. Sparsity’s efficiency depends on the hardware 
capabilities, such as semistructured sparsity supported by modern 
accelerators like GPUs, where specific patterns of zeroed weights 
enable faster computations. The key advantage is its ability to 
reduce computational requirements significantly when properly 
implemented.

While sparsity can yield notable benefits, particularly when combined 
with other optimization methods like quantization, it typically requires 
a more involved optimization process. Therefore, it’s recommended 
for scenarios with extensive scale or specialized hardware setups. 
By carefully applying sparsity, organizations can improve inference 
efficiency, but due to the complexity involved, quantization is more 
commonly recommended as the primary optimization technique.

By adopting compression workflows and validated runtimes, 
organizations can better manage operational costs, support 
scalability, and prepare for future increases in AI usage without 
overcommitting infrastructure resources.
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While model compression techniques like quantization and sparsity reduce memory 
and compute requirements, they are specifically designed to maintain acceptable 
levels of accuracy. For example, 8-bit quantization typically delivers near-baseline 
accuracy while halving memory consumption. Even 4-bit models can retain strong 
performance when optimized using advanced quantization techniques like weight 
rounding and calibration. Structured sparsity patterns, such as 2:4 sparsity, allow 
hardware accelerators to skip redundant operations without degrading output 
quality. In many production scenarios, teams achieve significant resource savings 
with minimal or no reduction in model performance. Testing and validation remain 
essential, but for most applications, well-implemented compression yields high-
efficiency inference with accuracy intact.

Will accuracy be compromised?
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Red Hat AI

Red Hat AI is a platform that accelerates AI innovation and reduces 
the operational cost of developing and delivering AI solutions across 
hybrid cloud environments. It simplifies integration with private data, 
helps reduce costs with optimized models and efficient inference, and 
accelerates delivery of agentic AI workflows with a scalable,  
flexible platform.

Red Hat AI allows organizations to manage and monitor the lifecycle 
of both predictive and gen AI models at scale, from single-server 
deployments to highly scaled distributed platforms. The platform 
is powered by open source technologies and a partner ecosystem 
focused on performance, stability, and GPU support across 
various infrastructures.

What is Red Hat AI?
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•	 Optimized and validated 
models. Pre-evaluated and 
performance-tested models 
to reduce the burden of 
testing and fine-tuning.

•	 LLM Compressor. A toolkit 
that helps users apply 
quantization and compression 
to popular models, reducing 
resource requirements for 
inference without losing 
accuracy.

•	 Model customization. 
Tools to fine-tune or adapt 
foundation models to specific 
enterprise needs.

•	 High-performance inference 
runtime. An optimized 
vLLM-based runtime using 
advanced batching and memory 
management techniques for 
efficient, scalable, and reliable 
model serving.

•	 Flexible and consistent 
scaling. Infrastructure 
support that makes sure there 
is flexibility and consistency 
when scaling AI across hybrid 
cloud environments.

•	 Accelerated agentic 
AI delivery. Capabilities 
designed to rapidly deploy 
advanced, autonomous 
AI systems, keeping 
organizations at the forefront 
of AI innovation.

•	 LLMOps. Practices and tools 
that streamline the deployment, 
monitoring, and management 
of LLMs in production 
environments.

•	 AI safety and evaluations. 
Frameworks and methodologies 
for assessing model accuracy, 
fairness, and robustness, 
making sure AI deployments are 
responsible and reliable.

Red Hat AI includes includes:



Red Hat AI helps organizations optimize AI models through advanced techniques designed to balance efficiency, 
accuracy, and cost-effectiveness.

Red Hat AI emphasizes 2 primary aspects of model optimization: efficient runtime and compressed models. By 
combining these approaches, Red Hat’s AI portfolio delivers rapid inference performance while reducing the 
required computational resources. Specifically, the Red Hat AI Inference Server employs continuous batching 
and memory-efficient methods, making sure that models process more tokens per second, achieving greater 
throughput with less GPU usage.

Red Hat AI LLM Compressor provides a standardized approach to applying the compression techniques 
discussed in this e-book, and aims to deliver optimization with 99% retained accuracy. It helps users generate 
optimized versions of popular models that are tuned for inference runtimes such as vLLM. This makes it easier to 
run high-performing, compressed models on a wider variety of hardware setups.

Optimizing models with Red Hat AI

20
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Red Hat AI provides extensive validation to help organizations confidently select, deploy, and scale optimized 
models. Given the wide range of available LLMs, organizations often face challenges identifying models that best 
align with their use cases in terms of accuracy, performance, and cost efficiency. To address these challenges, 
Red Hat AI uses open-source validation tools (such as GuideLLM, Language Model Evaluation Harness, and 
vLLM) to rigorously benchmark model performance across multiple evaluation tasks. This validation supports 
reproducibility and informed model selection, reducing complexity and uncertainty.

Red Hat AI also offers capacity guidance to help organizations accurately plan AI infrastructure and optimize the 
use of resources, addressing common issues such as hardware underuse, high compute costs, and inefficiencies 
at inference time. This combination of validated models, optimized deployment settings, and tailored hardware 
recommendations allows organizations to enhance flexibility, accelerate deployments, and achieve predictable 
performance while managing costs effectively.

With compression techniques and optimized runtimes, Red Hat AI makes it practical to deploy LLMs at scale, 
equipping teams to meet rising demands while maintaining control over cost, complexity, and the use of 
compute assets.
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Next steps

Ready to reduce the cost and complexity of serving LLMs? Learn more about 
Red Hat AI Inference Server or connect with your Red Hat representative to get started.

© 2025 Red Hat, Inc. Red Hat, and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in 
the United States and other countries.

https://www.redhat.com/en/products/ai/inference-server

