
A practical guide
to software supply

chain security
1

2

Contents

01 Introduction

02
Chapter 1

Understanding
software supply chains

05
Chapter 2

Understanding software
supply chain attacks

09
Chapter 3

Protecting your
software supply chain

16
Chapter 4

Boost software supply
chain security with Red Hat

19

Ready to get started?

1

Introduction Chapter 1 Chapter 2 Chapter 3 Chapter 4 Ready to get started?

Introduction

Across industries, organizations rely on IT infrastructure
and applications to manage operations, deliver services
and products, and gain insight into their business.
Security is a critical consideration for these systems
and workloads. Data breaches and attacks can result
in severe consequences for both businesses and their
customers. In fact, the average cost of a data breach in
2023 reached an all-time high of US$4.45 million.1

Software supply chain attacks are of particular concern,
as they take nearly 9% longer to identify and contain
and result in a higher average cost of US$4.63 million.1
And software supply chain attacks have increased by
742% annually, on average, over the past 3 years.2

It’s no surprise, then, that 76% of CEOs say that
protecting their partner ecosystem and supply chain
is just as important as building their organization’s
cyber defenses.3

This e-book provides a practical guide for understanding
and implementing software supply chain security in
containerized and Kubernetes environments. We’ll
review the components and architecture of software
supply chains, identify areas where vulnerabilities can
be exploited, and provide best practices and guidelines
for protecting your software supply chain.

Security remains a top concern for
organizations of all types and sizes.

 1 IBM Security. “Cost of a Data Breach Report 2023,” July 2023.
 2 Sonatype. “8th Annual State of the Software Supply Chain,” October 2022.
 3 KPMG. “KPMG 2022 CEO Outlook,” 2022.

The high cost of software
supply chain attacks

Software supply chain security is
critical for organizations that depend
on applications and digital services
to operate.

Average cost of a software supply
chain attack:

US$4.63 million 1

Average time to identify and contain
a software supply chain attack:

294 days 1

Share of data breaches originating from
software supply chain attacks in 2023:

12% 1

Annual increase in software supply
chain attacks over the past 3 years:

742% 2

https://www.ibm.com/reports/data-breach
https://www.sonatype.com/resources/2023-software-supply-chain-report
https://kpmg.com/xx/en/home/insights/2022/08/kpmg-2022-ceo-outlook.html

Chapter 1Introduction Chapter 2 Chapter 3 Chapter 4 Ready to get started?

Understanding
software supply chains

Software supply chains are the ecosystems in which software is developed, delivered, and deployed.
They include everyone and everything that acts upon or impacts software during its life cycle. All
people, components, libraries, tools, processes, and systems that create, build, deploy, and run
software are part of the software supply chain.

The 2 main groups of actors in software supply chains are producers and consumers. Producers
create and distribute software. Producers include software development companies, open source
projects, and development teams in government and public sector organizations. Consumers use
software. Consumers can be operations teams within the producer’s organization, external software
development organizations, government and public sector entities, and other businesses. In today’s
software ecosystem, all producers are also consumers, as anyone who builds software either uses or
incorporates third-party tools or components when creating their own products.

While every software supply chain is unique, most follow a similar foundational model. Divided into
4 phases—create, build, deploy, and run—this model shows how sources and dependencies are
transformed into artifacts that are integrated into other software or deployed and run as applications.

The following sections discuss the details of each phase in the software supply chain model.

Standardize, share, and store with centralized access controls

Manage

SBOM inventory management | Application risk assessment

Dependencies

Application libraries

Language runtimes

Universal base images

Provenance and
attestation of

curated content

Create

Software
composition

analysis

Digitally signed
and verified

Build

Artifact building

SBOM generation

Image building

SLSA verify

Deploy

GitOps

Progressive delivery

Canary rollout

Image scanning

Run

Open source
 software risk

profiles compliance

Images, containers,
clusters, and network

2

Create phase
In the create phase, producers perform development- and operations-related tasks that add value
to their software products.

First, developers and IT operations staff write and review sources. Sources are content that is
written or thoroughly reviewed by the producer, stored in repositories, and used to build software
products. Common sources include:

 ► Source code written by developers within the producer organization.

 ► Source code written by a third party that is thoroughly reviewed by the producer.

 ► Container images created by the producer’s operations teams.

 ► Build tools and configurations written by producers to define how artifacts are transformed.

 ► Infrastructure as code (IaC) used to provision build resources.

Software architects and developers also evaluate and integrate dependencies during the create
phase. Like sources, dependencies are also used to build software, but they are not written or
reviewed by the producer. Common dependencies include:

 ► Open source libraries, modules,
and components.

 ► Third-party commercial middleware.

 ► Industry-standard software
development frameworks.

 ► Publicly available container images.

When evaluating dependencies, producers should consider the trustworthiness of the supplier and
verify the authenticity of each dependency.

Finally, developers use security scan and test tools to detect potential vulnerabilities in both
sources and dependencies. Common techniques and tools include software composition analysis
(SCA), threat modeling, static application security testing (SAST), interactive application security
testing (IAST), and dynamic application security testing (DAST).

Build phase
In the build phase, sources and dependencies are transformed into artifacts using build tools and platforms.
Artifacts are the outputs of this phase and are published for use by others. Common artifacts include:

 ► Compiled binaries.

 ► Container images.

 ► Documentation.

 ► Software bills of materials (SBOMs).

 ► Vulnerability Exploitability eXchange (VEX) documents.

 ► Other attestations.

Chapter 1Introduction Chapter 2 Chapter 3 Chapter 4 Ready to get started?

3

4

Chapter 1Introduction Chapter 2 Chapter 3 Chapter 4 Ready to get started?

Build platform implementation varies between organizations. Common elements include:

 ► Compilers and related tools for transforming sources and dependencies into artifacts.

 ► Attestation tools that generate provenance on newly created artifacts.

 ► Functional test suites created within the software development organization.

 ► Continuous integration and continuous deployment (CI/CD) pipelines.

 ► Security scanning tools that may be integrated into CI/CD pipelines.

Finally, artifacts created during the build phase are stored in artifact repositories and published in
package registries to make them available for use in the deploy and run phases.

The create and build phases are iterative. Software development and IT operations
teams often use artifacts from the build phase to test and debug issues in sources
and dependencies. Once issues are resolved, the build phase begins again.

Deploy phase
In the deploy phase, consumers access
published artifacts and either use them as
dependencies in software development
projects or deploy them as workloads.

IT operations teams often use GitOps
approaches to automate version-controlled
software deployment, speed delivery of new
features to users, promote collaboration
between developer and operations teams,
and increase consistency. Teams define
deployment configurations using IaC and
commit them to source repositories. Then
consumers' CI/CD pipelines continuously
and automatically download, test, and
deploy updated versions of applications and
infrastructure, based on these configurations.

Run phase
In the run phase, consumers run the resulting
applications in hybrid cloud environments.

A secure runtime environment is essential
and IT operations teams should configure the
security features of the underlying software
infrastructure—including the operating system
and container management platform—
accordingly. They should also ensure the
runtime environment is maintained with
the latest operating system and platform
security updates. Finally, IT operations teams
should monitor applications for reported
vulnerabilities and active threats from both
external and internal sources.

https://www.redhat.com/en/topics/devops/what-is-gitops

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Understanding software
supply chain attacks

Software supply chain attacks encompass a range of malicious
activities. Their primary objective is to compromise the security
and integrity of software. These attacks can occur across all
stages of the software supply chain, from development and
build to deployment and runtime. They seek to inject unofficial
or unauthorized behavior into software artifacts while avoiding
detection. The intended targets of software supply chain attacks
are both software vendors that produce artifacts and consumers
of those artifacts.

An attack begins when an adversary gains access to systems
used in a software supply chain, including repositories, build
platforms, registries, and deployment pipelines. Common
methods of access include phishing attacks, exploitation of
security flaws in internet-facing applications, and malicious
use of existing account credentials.

Once they have access, the adversary modifies the software
product to include unauthorized behavior and waits for the
target to deploy the compromised software. Adversaries can
compromise software directly or via subsequent patches or hot
fixes. And because artifacts are often used by many different
consumers, compromising a single software vendor can result
in multiple potential targets.

After the target deploys the compromised application,
adversaries use their modifications to gain persistent privileged
access to the target’s systems, bypassing traditional perimeter
security measures like border routers and firewalls. They can
then inject additional malware and carry out malicious activities
like data or financial theft, unauthorized monitoring, or disabling
of networks and systems.

The following sections discuss how attacks can occur
in different parts of the software supply chain.

5

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Attacks during the create phase
Modern software development organizations store many types of content—including source code,
infrastructure as code, and tool configurations—in source repositories. This variety makes source
repositories attractive targets. Adversaries that attack repositories can potentially modify not only
code but also infrastructure, CI/CD pipelines, and build platforms.

Key attack vectors

 ► Unauthorized changes to sources: Adversaries can attack sources before they are submitted to official
repositories. They may also use integrated development environments (IDEs) or other developer tools to
introduce malicious behavior into sources. Adversaries within your organization may use developer roles
and access to directly add malicious behavior to sources. Additionally, any developer can unintentionally
introduce vulnerabilities into sources that adversaries can exploit later.

 ► Compromised source repositories: Adversaries may use administrative interfaces or compromised
underlying infrastructure to directly attack sources that are already stored in repositories.

Key attack vectors

 ► Compromised dependencies: Adversaries often try to introduce malicious behavior into commonly
used third-party dependencies before producers download and use them in build processes.

 4 Sonatype. “8th Annual State of the Software Supply Chain,” October 2022. 6

Attacks involving dependencies
Software organizations often use a variety of third-party commercial and open source libraries,
components, and services—each of which has its own dependencies. On average, commonly used
libraries contain 5.7 dependencies and some libraries have more than 35 dependencies.4 The number
and transitive nature of dependencies results in a large attack area for adversaries to exploit.

https://www.sonatype.com/resources/2023-software-supply-chain-report

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Attacks during the deploy phase
Organizations rely on automated processes to download artifacts and software that are deployed
and run in their environments. Because installation, deployment, and update processes often retrieve
software from external sources over the internet, they are attractive targets for supply chain attacks.

Key attack vectors

 ► Altered artifacts: Adversaries may attack artifacts that consumers download during installation or update
processes. They may replace downloaded artifacts with ones containing malicious behavior or trick
consumers into downloading or using compromised artifacts. Adversaries may also intentionally prevent
consumers from downloading updates to ensure existing security vulnerabilities remain in place.

 ► Compromised deployment processes: Adversaries may modify consumers’ deployment processes—
including services, tools, and software infrastructure—to introduce compromised artifacts.

Key attack vectors

 ► Modified build sources: Adversaries may attack build platform inputs—like source versions and locations
and build steps and parameters—directing the platform to use compromised sources or dependencies.

 ► Compromised build platforms: Adversaries can attack any part of the build platform, including services,
tools, and underlying infrastructure. They may perform builds that alter other builds or compromise artifacts
in build caches. Finally, adversaries may modify the build platforms themselves to inject malicious behavior.

 ► Compromised artifact repositories: Adversaries can directly attack artifact repositories by uploading and
publishing altered artifacts via an administrative interface or by compromising underlying infrastructure.

7

Attacks during the build phase
Build platforms are typically multitenant systems that are tightly integrated with artifact repositories
and package registries. They often provide self-service capabilities to multiple untrusted users
simultaneously. The variety and complexity of systems integrated into build platforms make them
attractive targets for adversaries.

8

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Global responses to software supply chain attacks
These scenarios are not just theoretical. Software supply chain attacks like these have
resulted in real data breaches. As a result, regulators worldwide are designing rules and
recommendations to protect the global software supply chain. Here are some of the responses:

 ► The U.S. National Institute of Standards and Technology (NIST) developed standards and
guidelines to enhance software supply chain security and govern the federal government’s
software procurement activities.

 ► The U.S. Cybersecurity and Infrastructure Security Agency (CISA) issued a recommended
practices guide for developers, targeted at creating more secure software supply chains.

 ► The European Commission proposed the Cyber Resilience Act in September 2022, requiring
software producers to have, among other things, a detailed understanding of all components
within their product.

 ► The Association of Southeast Asian Nations (ASEAN) has several initiatives to improve
international cooperation in the area of software supply chain security.

Key attack vectors

Adversaries may attack targets’ systems by exploiting vulnerabilities in published software due to:

 ► Misconfigured software: Overly permissive configurations for network or privileged access, or a lack of
role-based access control (RBAC), can leave software vulnerable to attack.

 ► Known vulnerabilities: Insufficient vulnerability scanning during the previous phases can leave known
vulnerabilities in new software.

 ► Zero day vulnerabilities: Unknown, or zero day, vulnerabilities are more likely to make it to the run phase
without robust scanning during the previous phases.

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Attacks during the run phase
Nearly all aspects of modern business are dependent on software. Accordingly, applications
and workloads running in cloud environments are attractive targets for adversaries.

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-supply-chain-security-guidance
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-supply-chain-security-guidance
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://asean.org/wp-content/uploads/2022/02/01-ASEAN-Cybersecurity-Cooperation-Paper-2021-2025_final-23-0122.pdf

9

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Protecting your
software supply chain

Safeguarding your software supply chain requires a multifaceted approach. There are many things
you can do to improve software supply chain security, and each will add another layer of protection
for your organization and customers. The following sections discuss key concepts for building security
into your software supply chain, along with best practices for implementation.

Software bill of materials

A software bill of materials (SBOM) is a nested inventory of all sources and dependencies—including
source code, open source software and libraries, middleware, and development frameworks—that
are part of an artifact. There are several industry-wide standards for SBOMs—CycloneDX, Software
Package Data Exchange (SPDX), and Software Identification (SWID) tagging, for example—that
describe software composition using a uniform language that other tools can understand. Although
SBOM contents may vary by company and standard, most contain a manifest, pedigree, and provenance.

 ► The manifest is a list of the components used to build an artifact. It includes baseline information
like the author name, supplier name, version string, component hash, and a unique identifier for
each component.

 ► The pedigree describes how the artifact was produced and descendant, variant, and ancestor
relationships. It can also specify modifications made to open source components.

 ► The provenance describes the chain of custody or path of the software between organizations.
It describes where and from whom each component was retrieved.

Industry best practices require SBOMs to be generated as part of the build process, stored in artifact
repositories, delivered with associated artifacts, and reviewed regularly by consumers. Creating and
maintaining SBOMs can help organizations avoid using and distributing potentially harmful software.
Producers can ensure that all components are up to date and respond quickly to new vulnerabilities
while consumers can perform vulnerability or license analyses on SBOMs to evaluate the risk of using
or deploying an artifact.

https://cyclonedx.org/
https://spdx.dev/
https://spdx.dev/
https://csrc.nist.gov/projects/software-identification-swid/guidelines

10

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Vulnerability Exploitability eXchange

Published by producers, a Vulnerability Exploitability eXchange (VEX) is a machine-readable
document that tells consumers if artifacts are impacted by vulnerabilities in upstream components
and, if affected, the recommended remediation actions to take. For any combination of artifact
and vulnerability, the VEX status can be:

 ► Not affected. No remediation is required.

 ► Affected. Actions are recommended to remediate the vulnerability.

 ► Fixed. The product version contains a fix for the vulnerability.

 ► Under investigation. It is not yet known whether the artifact version is affected by the vulnerability.

Producers and consumers can integrate SBOM and VEX information for a current view of the status
of vulnerabilities in software products. You can take a targeted approach to finding and remediating
vulnerabilities and reduce the number of investigations into nonexploitable vulnerabilities.

Attestation

Used by producers to make statements about the artifacts they deliver, software attestations are trust
mechanisms based on authenticated, machine-readable metadata. Whether included in an SBOM or
delivered separately, attestations allow consumers to independently validate the integrity of these
statements from producers.

While implementation details vary across organizations, all attestations include a subject, content
or statement, and a signature.

 ► The subject is the list of artifacts to which the attestation applies.

 ► The content is 1 or more statements about the artifacts that the producer knows to be true.

 ► The signature is a tamper-resistant mechanism that denotes and authenticates the producer
that created the attestation.

Although producers can attest any fact related to an artifact, there are several common types of
attestations in a typical software supply chain. Attestations that inventory resources used by the build
platform like server operating systems, cloud regions, and security groups, along with their current
state, affirm the security of the build environment. Attesting build platform components like compilers
and vulnerability scanning tools check that the appropriate tools are used to create and test artifacts.
Identifying the provenance and pedigree of sources and dependencies in attestations helps consumers
verify that the correct files were used to build artifacts. Since multiple artifacts are often created in a
single build process, attesting relationships between artifacts helps producers and consumers track
artifacts and ensure consistency.

https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

11

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Secure Software Development Framework

Published by NIST, the Secure Software Development Framework (SSDF) is a set of fundamental,
security-focused practices that can be applied to software development life cycle models. Based on
established standards, guidance, and documentation, the SSDF includes practices that both directly
and indirectly impact software artifacts to help producers increase the security of their software
development processes.

The SSDF groups best practices into 4 categories of recommendations:

 ► Prepare the organization. Ensure that people, processes, and technology are ready for security-
focused software development.

 ► Protect the software. Safeguard software components from tampering and unauthorized access.

 ► Produce well-secured software. Produce security-focused software with minimal vulnerabilities.

 ► Respond to vulnerabilities. Identify vulnerabilities in software releases, address them as needed,
and act to prevent similar occurrences in the future.

Producers and consumers can use these recommendations to strengthen their existing software
development practices, establish requirements for third-party suppliers, and acquire software that
meets fundamental best practices.

Supply-chain Levels for Software Artifacts

Supply-chain Levels for Software Artifacts (SLSA) is a set of security guidelines established by
industry consensus to help producers protect their software supply chains and build confidence and
trust with consumers.

A key component of these guidelines, SLSA provenance is an attestation that is created and signed
by build platforms. It describes how artifacts are built, including the building entity, process, and
inputs. Producers can follow SLSA build requirements to strengthen their software supply chain
security. Consumers can follow SLSA verification recommendations to evaluate the trustworthiness
of artifacts.

SLSA defines 4 build process levels that describe the trustworthiness and completeness of an artifact’s
SLSA provenance. While higher levels provide greater guarantees against supply chain threats, they
incur higher implementation costs. For each artifact, producers can align with the build process level
that meets their needs and implement higher levels as requirements change.

https://csrc.nist.gov/Projects/ssdf
https://slsa.dev/
https://slsa.dev/spec/v1.0/levels
https://slsa.dev/spec/v1.0/verifying-artifacts

12

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Software supply chain security best practices
There is no one best way to secure your software supply chain. Instead, there are many best practices—
based on the concepts discussed in the previous sections—that you can use to incrementally improve
your software supply chain security.

Best practices that apply to sources

 ► Educate developers on and enforce secure coding best practices.

 ► Perform security-focused peer code reviews, analysis, and testing.

 ► Require and automate source code scanning with software linting and
SAST tools continuously throughout all phases of the software supply chain.

 ► Actively manage dependencies in sources.

 ► Reuse existing, security-tested sources whenever possible.

 ► Require signed commits for all source repository submissions.

 ► Scan source repositories to ensure that secrets are not committed.

Best practices that apply to dependencies from open source organizations

 ► Thoroughly research and investigate open source artifacts before using them.

 ► Download and use open source artifacts from trusted sources.

 ► Verify the provenance of all dependencies before building them.

 ► Obtain and thoroughly review SBOMs for all open source artifacts.

 ► Automatically scan all open source dependencies with SAST tools.

 ► Use SCA tools to detect transitive dependencies in open source artifacts.

 ► Keep open source artifacts up to date with tools that automatically monitor
dependencies in your source repositories for new releases.

13

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Best practices that apply to dependencies from third-party software producers

 ► Establish security requirements and controls for producers that are at least as rigorous
as those used internally.

 ► Work with producers that follow DevSecOps practices throughout their entire software
development life cycle.

 ► Require and review SBOMs from producers for each release.

 ► Verify the provenance of all third-party artifacts before integrating or deploying them.

 ► Choose producers with product vulnerability response programs that identify, disclose,
and quickly fix vulnerabilities in both their sources and artifacts.

 ► Ensure that producers certify their products to industry security standards and submit
artifacts for external assessments.

 ► Require producers to verify that all third-party artifacts incorporated into their code
comply with all security controls.

Best practices that apply to container images

 ► Use container images—including base and parent images—from trusted sources.

 ► Verify the provenance of all downloaded container images.

 ► Avoid images that are updated infrequently, especially if they do not contain relevant
vulnerability disclosures.

 ► Opt for minimal base images with only the required operating system packages and frameworks.

 ► Create containers by installing the exact tools and libraries your application requires rather
than removing components from an existing image.

 ► Scan images for vulnerabilities early, often, and in multiple places, including developer
workstations, CI/CD platforms, image registries, and actively running containers.

 ► Keep containers up to date by rebuilding, testing, and redeploying with the latest software patches.

 ► Monitor containers for newly discovered vulnerabilities throughout their entire life cycle.

 ► Avoid deploying containers with known vulnerabilities by removing old images from registries.

 ► Manage any necessary secrets carefully and grant only minimal required permissions.

14

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Best practices that apply to build processes and platforms

 ► Follow SLSA guidelines for reproducible builds on hosted and isolated platforms.

 ► Implement build platforms using CI/CD pipelines with automated security and developer guardrails.

 ► Use only security-focused components—like hardened container images and artifacts and
checksum-verified tools—in your build processes.

 ► Ensure all steps of your build process are properly configured and pay close attention to changes
in tools, scripts, and configuration files.

 ► Scan dependencies’ SBOMs for security risks and generate SBOMs for newly built artifacts
as part of automated CI/CD pipelines.

 ► Automate provenance verification for all dependencies, along with provenance generation
and attestation for newly built artifacts.

 ► Scan dependencies automatically for vulnerabilities using SAST tools.

Best practices that apply to infrastructure used in your software supply chain

 ► Set and enforce software download and installation policies for developer workstations.

 ► Follow least privilege principles by restricting direct access to repositories, build platforms,
and deployment services, and use multifactor authentication and dedicated nonhuman
accounts where possible.

 ► Use tools to encrypt, store, and manage secrets and credentials and enforce access controls.

 ► Automate infrastructure deployment using IaC and GitOps techniques.

 ► Monitor infrastructure for configuration drift and automatically apply updates, based on your
latest IaC definitions.

 ► Use dedicated security tools to scan IaC files and identify vulnerabilities and misconfigurations
across your entire IT environment.

 ► Place CI/CD pipeline infrastructure within your network perimeter and pay attention to changes
in pipeline configuration.

Chapter 3Introduction Chapter 1 Chapter 2 Chapter 4 Ready to get started?

Best practices that apply to deployment and run processes in your software supply chain

 ► Manage application configuration using industry best practices like analyzing the security impacts
of requested privileges, allowing only the minimum required services and permissions, and defining
configurations as code stored in repositories.

 ► Test applications and infrastructure in isolated, preproduction environments before deploying
to production.

 ► Scan running workloads automatically for vulnerabilities and misconfigurations and use defined
processes for triaging and mitigating suspected issues.

 ► Monitor deployed applications and container images for security updates.

 ► Use expected software behavior and analytics—including artificial intelligence and machine
learning (AI/ML) techniques—to implement data controls and detect potentially malicious activities.

 ► Employ deliberate network segmentation to confine vulnerabilities to a portion of your IT environment.

Red Hat has developed and delivered security-focused
open source software for more than 30 years. Security is
a critical priority in our own software supply chain practices.

In collaboration with our security partners, we implement
security throughout every phase of our software life cycles
and technology stack. We develop our infrastructure,
application platform, and automation technologies using
a robust software supply chain that implements end-to-end
security in a layered approach, from the operating system
to the application, across hybrid cloud environments.

As a result of this approach, our trusted open source
technologies let you:

 ► Build a strong, security-focused IT foundation.

 ► Implement security throughout your application
development life cycles via DevSecOps practices.

 ► Manage and automate your hybrid cloud environment
to improve security and compliance.

Our software supply chain
process includes:

 ► Static source code analysis.

 ► Software provenance.

 ► Quality assurance and
regression testing.

 ► Product hardening.

 ► Distribution through
secured channels.

 ► Continuous security updates
for all packages contained in
Red Hat® products, including
backported fixes.

Red Hat’s approach to security best practices

15

16

Chapter 4Introduction Chapter 1 Chapter 2 Chapter 3 Ready to get started?

Boost software supply
chain security with Red Hat

Red Hat’s trusted approach to software supply chain security can help you successfully adopt
DevSecOps practices, use open source code and third-party dependencies safely, and embed security
into your software development life cycle. Our solutions let you code efficiently and build and monitor
software using proven platforms, trusted content, and real-time security scanning and remediation—all
without increasing operational complexity.

Standardize, share, and store with centralized access controls

Dependencies

Application libraries

Language runtimes

Universal base images

Provenance and
attestation of

curated content

Build

Artifact building

SBOM generation

Image building

SLSA verify

Create

Software
composition

analysis

Digitally signed
and verified

Run

Open source
 software risk

profiles compliance

Images, containers,
clusters, and network

Deploy

GitOps

Progressive delivery

Canary rollout

Image scanning

Manage

SBOM inventory management | Application risk assessment

https://www.redhat.com/en/solutions/trusted-software-supply-chain

17

Chapter 4Introduction Chapter 1 Chapter 2 Chapter 3 Ready to get started?

Code rapidly with integrated security checks and trusted content management

Consume content from trusted libraries that provide transparency and validate the provenance of
open source and third-party source code. Red Hat Trusted Profile Analyzer (Service Preview) gives
developers simple access to curated builds and hardened open source libraries that have been verified
and attested with provenance checks. It also brings application security checks to local integrated
development environments (IDEs). Developers can run dependency analyses and identify and
remediate vulnerabilities while coding, helping to avoid deploying applications that contain security
vulnerabilities.

Build and deploy software with security-focused workflows and policy-as-a-code

Integrate security guardrails into every phase of your software development life cycle. Red Hat
OpenShift® helps you build security into containers and cloud-native applications. It incorporates
many developer-friendly tools and features, including:

 ► Red Hat Developer Hub (Developer Preview)—an enterprise-grade, open platform for building
developer portals.

 ► Red Hat OpenShift Pipelines—a cloud-native CI/CD solution for creating independently scalable
pipelines from simple, repeatable steps.

 ► Red Hat OpenShift GitOps—an operational framework that uses Git as a single source of truth
to manage and deploy application components as code.

Combining Red Hat OpenShift with DevSecOps best practices can simplify and speed application
builds, testing, and deployment across on-site and cloud environments to support multicloud
operational strategies. Declarative security tools let developers design, configure, and add security
checks at every stage in your software supply chain.

You can build additional automation into your software supply chain using Red Hat Trusted Application
Pipeline (Service Preview). This cloud service provides Tekton Chains pipeline definitions with
automated security checks and security-focused release workflows for deploying container images
across environments. It automatically generates SBOMs for container images and provides provenance
and attestations in line with SLSA standards. Detailed RBACs are included, and deployment pipelines
can be configured according to enterprise contracts to prevent suspicious build activity.

Extend security throughout your entire software supply chain

Continuously monitor applications and environments at runtime to identify risk profile changes caused
by malicious components. Red Hat Advanced Cluster Security for Kubernetes provides Kubernetes-
native security features to enhance infrastructure and workload protection and visibility throughout
your entire application life cycle. It includes runtime detection and response capabilities.

https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/auth?client_id=cloud-services&redirect_uri=https%3A%2F%2Fconsole.redhat.com%2Fapplication-services%2Ftrusted-content%3Fsc_cid%3D7013a000003DTQLAA4&state=cc588b89-9723-4ad7-8357-cbc70b7fbc8c&response_mode=fragment&response_type=code&scope=openid&nonce=b2774943-3231-43cb-93d0-45a6728f10f5
https://developers.redhat.com/products/developer-hub/overview
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.redhat.com/en/topics/devops/what-is-gitops
https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/auth?client_id=cloud-services&redirect_uri=https%3A%2F%2Fconsole.redhat.com%2Fpreview%2Fhac%2Fapplication-pipeline%3Fsc_cid%3D7013a000003DTQGAA4&state=02247c38-fee7-446f-ae47-d44f6698d4ba&response_mode=fragment&response_type=code&scope=openid&nonce=18f6b641-d956-4097-89ca-60ce773d0478
https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/auth?client_id=cloud-services&redirect_uri=https%3A%2F%2Fconsole.redhat.com%2Fpreview%2Fhac%2Fapplication-pipeline%3Fsc_cid%3D7013a000003DTQGAA4&state=02247c38-fee7-446f-ae47-d44f6698d4ba&response_mode=fragment&response_type=code&scope=openid&nonce=18f6b641-d956-4097-89ca-60ce773d0478
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes

Chapter 4Introduction Chapter 1 Chapter 2 Chapter 3 Ready to get started?

Streamline security compliance by centralizing policy enforcement across clusters. Red Hat Advanced
Cluster Management for Kubernetes delivers visibility into your entire Kubernetes domain with built-in
governance and application life cycle management capabilities. You can immediately visualize your
security posture based on defined standards and detailed application and cluster configuration audits.

Both solutions are included with Red Hat OpenShift Platform Plus—a complete set of powerful,
optimized tools for hardening, protecting, and managing your applications.

Verify and manage trusted content for your software assets

Provide secure locations for storing, managing, and finding trusted content, images, and artifacts
like security metadata. Included with Red Hat OpenShift Platform Plus, Red Hat Quay is a security-
focused, scalable private registry platform for delivering applications and container images across
hybrid cloud environments. It automatically scans image containers for vulnerabilities before deploying
to production to prevent last-minute introduction of threats.

Manage, analyze, and monitor SBOMs and VEX documentation with a centralized interface. Red Hat
Trusted Profile Analyzer gives you visibility and control over software assets to identify security threats
and vulnerabilities early in the development life cycle. It provides a unified interface for aggregating,
managing, and analyzing security metadata and open source dependencies without delaying
development or increasing operational complexity.

Build a trusted software
supply chain with Red Hat
By following the best practices and recommendations in this
e-book, you can begin your transition to a trusted software supply
chain model. Red Hat OpenShift Platform Plus brings together a
complete set of tested and trusted services—including Red Hat
OpenShift, Red Hat Advanced Cluster Management, Red Hat
Advanced Cluster Security, and Red Hat Quay—for building and
deploying applications at scale. It lets you protect all artifacts,
processes, tools, and infrastructure involved in your software
life cycle. With this consistent foundation, you can incorporate
multicluster security, compliance, and application and data
management across teams and infrastructure to build a trusted
software supply chain.

18

https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://www.redhat.com/en/technologies/cloud-computing/openshift/platform-plus
https://www.redhat.com/en/technologies/cloud-computing/quay

Copyright © 2023 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries.

528000_1023_KVM

Ready to get started?

Protect your organization and applications from growing security threats.

Red Hat provides solutions to help you build a trusted software supply chain.
Take advantage of our experience and expertise to code, build, and monitor
your software using proven platforms, trusted content, and real-time security
scanning and remediation.

Learn how Red Hat
OpenShift Platform
Plus can help you
build, deploy, and
run security-focused
applications at scale.

See how Red Hat
Trusted Software
Supply Chain can help
you build security
into your software
development life cycles.

Try container and
Kubernetes security
via a no-cost trial of
Red Hat Advanced
Cluster Security
Cloud Service.

https://www.redhat.com/en/technologies/cloud-computing/openshift/platform-plus
https://www.redhat.com/en/solutions/trusted-software-supply-chain
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes/cloud-service/trial

	RHODS try it button 2:
	RHODS try it button 3:
	RHODS try it button 4:

