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Audience
The purpose of this document is to assist those who are responsible for infrastructure services,
which includes customers, sales engineers, field consultants, and solution architects.
This document showcases an example of a successful large-scale deployment of OpenShift
Virtualization, which is a feature of Red Hat OpenShift® Container Platform, with RHCS as a
high-availability (HA) external network storage solution.

Executive summary
This document describes the learnings of the Red Hat OpenShift Virtualization Performance
and Scale team from a successful large-scale deployment incorporating both an external Red
Hat® Ceph® Storage 5 (RHCS) cluster (47 nodes) and Red Hat OpenShift Virtualization (100
nodes) with the external Ceph cluster providing storage to the OpenShift Virtualization virtual
machines (VMs) accommodating a total of 3,000 VMs along with 21,400 pods.

This reference architecture will go through the steps we took to tune RHCS and Red Hat
OpenShift Virtualization, allowing the creation of a resilient 100-node OpenShift cluster.

We will also explain the reasoning behind those steps and provide information that will allow the
application of those recommendations to any cluster.

This table showcases the performance results for the most important scenarios that might occur
in any production environment:

Scenario Description Result

VM deployments Parallel deployment of up to
800 VMs

Testing results show that the fastest
deployment times can be achieved
when cloning in 100 VMs bulks.

VMs boot storms Parallel boot storms of up to
1000 VMs

Near linear boot times started at 01:42
(MM:SS) for 100 VMs, and ended at
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17:45 for 1000 VMs.

VMs latency Sustained idle latency
compared to workload latency
for both reads and writes

Idle VMs latency is not affected by the
number of IO threads accessing RHCS,
with 1 million IOPS,  read latency
reduced by up to 30%, while write
latency increased by up to 88%.

VMs migration 1000 VMs migration 1000 VMs migration + 7000 Pod
evictions took approximately 118
minutes (HH:MM).

VMs migration
added latency

1000 Red Hat Enterprise
Linux® (RHEL) VMs migration
with workload

IO Latency during migration was
increased by 9% for reads and 13% for
writes, migration time was increased by
3%, and the actual IOPS rate was not
impacted.

OpenShift cluster
upgrade

Updating OpenShift cluster
version

Minor upgrade took 35 minutes, major
upgrade took 136 minutes.

Software components

Product Version Description

Red Hat
OpenShift

4.9.15 Leading enterprise Kubernetes platform that
enables a cloud-like experience everywhere it's
deployed. Whether it’s in the cloud, on-premise,
or at the edge of the network, Red Hat OpenShift
gives you the ability to choose where you build,
deploy, and run applications through a consistent
experience.

Red Hat Ceph
Storage

5 Open, massively scalable, simplified storage
solution for modern data pipelines. Engineered
for data analytics, artificial intelligence/machine
learning (AI/ML), and emerging workloads, Red
Hat Ceph Storage delivers software-defined
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storage on your choice of industry-standard
hardware.

Red Hat
OpenShift Data
Foundation

4.9.2 Software-defined storage for containers.
Engineered as the data and storage services
platform for Red Hat OpenShift, Red Hat
OpenShift Data Foundation helps teams develop
and deploy applications quickly and efficiently
across clouds and bare-metal hosts.

Red Hat
OpenShift
Virtualization

4.9.2 Red Hat’s solution for running VMs on a
Kubernetes cluster. OpenShift Virtualization is
set to achieve two goals: The first is to help all
users consolidate their workloads on one
platform, thus reducing the operational overhead
of managing an additional virtualization platform
alongside a container platform, whether they are
long-term virtual machines users or new to the
VM world. The second is taking advantage of the
strength of the Kubernetes engine and
ecosystem to help users modernize their
traditional workload capabilities, orchestration,
and architecture.
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Physical components
RHCS cluster

10 * DELL PowerEdge R640 Rack Servers :

Component Specifications Comments

CPU 40 cores 2* Intel(R) Xeon(R) Gold 6230
CPU @ 2.10GHz

Memory 384GB ECC RAM 12 * SK Hynix 1x 32GB
DDR4-3200 RDIMM
PC4-25600R Dual Rank x4
Module

SSD (root disk) 446.63 GB - 6 Gbps MICRON SSD  MTFDDAK480TDT

SSD (storage) 3574 GB - 12 Gbps 2 * TOSHIBA SSD
KPM5XVUG1T92 1787.88 GB

NVME (storage) 2980.82 GB - 8 GT/s Samsung NVME
S5CXNA0N607551

37 * DELL PowerEdge R650 Rack Servers:

Component Specifications Comments

CPU 56 cores 2 * Intel(R) Xeon(R) Gold 6330
CPU @ 2.00GHz

Memory 384GB ECC RAM 12 * SK Hynix 1x 32GB
DDR4-3200 RDIMM
PC4-25600R Dual Rank x4
Module

SSD (root disk) 446.63 GB - 6 Gbps MICRON SSD  MTFDDAK480TDT

SSD (storage) 3574 GB - 12 Gbps 2 * TOSHIBA SSD
KPM5XVUG1T92 1787.88 GB

NVME (storage) 2980.82 GB - 8 GT/s Samsung NVME
S5CXNA0N607551

6



Note: The hardware used for RHCS was not perfect for the task since it had non-homogeneous
disk sizes and architecture across the RHCS cluster, which impacted Ceph's performance.
However, it is yet another strong testament to the versatility that Ceph can offer.

OpenShift cluster

100 * DELL PowerEdge R640 Rack Servers :

Component Specifications Comments

CPU 40 cores 2 * Intel(R) Xeon(R) Gold 6230
CPU @ 2.10GHz 20 Cores

Memory 384GB ECC RAM 12 * SK Hynix 1x 32GB
DDR4-3200 RDIMM
PC4-25600R Dual Rank x4
Module

SSD (root disk) 446.63 GB - 6 Gbps MICRON SSD  MTFDDAK480TDT
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Architecture
This diagram shows the networking architecture for the OpenShift and the Ceph clusters. Note
that the data path between the Ceph and the Red Hat OpenShift Container Platform (OCP)
cluster on a private lab VLAN uses the balance-alb bond with 2 * 25 GbE ports.
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RHCS network tuning
This section describes the Linux network tuning performed on the Ceph nodes to cater to this
large-scale environment.

Address Resolution Protocol (ARP) tuning

ARP flux

Any Linux host that has multiple network interfaces on the same subnet might be affected by
ARP flux issues. The ARP flux problem might occur when a host replies to an ARP request for
interfaces on the same subnet. This behavior is not necessarily a problem; however, in some
cases ARP flux might cause some applications to misbehave due to incorrect mapping between
IPv4 addresses and MAC addresses.

On RHEL-based hosts, we can fix this behavior by editing  /etc/sysctl.d/99.8-arp.conf on all
RHCS hosts, and adding the following lines:

net.ipv4.conf.all.arp_filter=1 #default value 0

net.ipv4.conf.all.arp_ignore=1 #default value 0

net.ipv4.conf.all.arp_announce=1 #default value 0

● filter=1 - This allows you to have multiple network interfaces on the same subnet and
have the ARPs for each interface be answered based on whether or not the kernel would
route a packet from the ARP’d IP out that interface (therefore you must use
source-based routing for this to work). In other words, it allows control of which cards
(usually 1) will respond to an arp request.

● ignore=1 - Reply only if the target IP address is a local address configured on the
incoming interface.

● arp_announce=1 - Try to avoid local addresses that are not in the target’s subnet for
this interface. This mode is useful when target hosts reachable via this interface require
the source IP address in ARP requests to be part of their logical network configured on
the receiving interface.

Make sure to load the new network settings by running:
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$ sysctl -p /etc/sysctl.d/99.8-arp.conf

ARP cache

The ARP cache keeps a list of ARP entries that are generated when an IP address is resolved to
a MAC address. To avoid large-scale cases in which the ARP cache cannot hold all the entries,
we will need to increase the ARP cache size by editing /etc/sysctl.d/99.7-arpcachesize.conf
and adding these lines:

net.ipv4.neigh.default.gc_thresh1 = 4096  #default value 128

net.ipv4.neigh.default.gc_thresh2 = 16384 #default value 512

net.ipv4.neigh.default.gc_thresh3 = 32768 #default value 1024

The numeric value is setting the threshold at which we will start garbage collecting for IPv4
destination cache entries. At twice this value, the system will refuse new allocations.

TCP/IP tuning

TCP window scaling

RHEL default network settings might not produce optimum throughput/latency performance
for large parallel jobs that are typically found on large-scale setups. This is how to tune the Linux
network and certain network devices for better parallel job performance:

For better use of high-bandwidth networks, a larger TCP window size needs to be used.
Therefore, we made sure that TCP window scaling is enabled.
This can be verified with - cat /proc/sys/net/ipv4/tcp_window_scaling

$ sysctl -w net.ipv4.tcp_window_scaling=1

Make it persistent through reboots with:

$ echo "net.ipv4.tcp_window_scaling=1" >> /etc/sysctl.conf
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Buffer size tuning

The next step will be to calculate the socket “send buffer size” and “receive buffer size.”
Generally speaking, each socket's read/write buffer can hold either a minimum of 2 packets, a
default of 4 packets, or a maximum of 10 packets. If the network socket buffer is too small, it
might fill up and reduce the effective throughput, which will impact performance. If the network
socket buffer is set large enough, it can improve performance to a certain extent.

But first some terminology:
● rmem_max - The maximum receive buffer size.
● wmem_max - The maximum send buffer size.
● wmem_default - Ts the default send buffer size.
● max_backlog - The maximum size of the receive queue.
● Netdev_budget - The maximum number of packets taken from all interfaces in one

polling cycle.

We used the packet size method to calculate the optimal buffer size; however, for setups that
experience high latency, we advise using the latency method.

Latency method
Optimize by calculating the maximum throughput of a single TCP connection using latency.

Optimal size =(round trip delay in microseconds) x (size of the link in Mb/s) x 1024^2

For example, our bond is running at 50000Mb/s. The latency from the Ceph node to the
OpenShift cluster is  0.208 divided by 1000 to convert that into microseconds. Then multiplied
by 50000 = 10.4, converted to bytes, it's 10905190.

Or:

ping -Ibond0 -c 60 -q 192.168.216.90|grep avg|awk -F"/" '{printf "%f", ($5

/1000) * 50000 * 1024^2}'
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Now, we just need to set the wmem_default, which contains 4 packets, meaning ¼ of 10905190,
and this is what the setting should look like:

net.core.rmem_max=10905190 #default value 212992

net.core.wmem_max=10905190 #default value 212992

net.core.wmem_default=4362076 #default value 212992

Packet size method
Optimize by packet size - a different method to use is to assume the average packet size per file
is 512KB,  each socket's optimal size would be: max size = (size of the packet in MB/s) x 1024^2.

net.core.rmem_max=5242880 #default value 212992

net.core.wmem_max=5242880 #default value 212992

net.core.wmem_default=2097152 #default value 212992

Note that optimizing by latency is the preferred method for networks that experience high
latency regularly.

Adapter tuning

NIC buffers

On large-scale setups that contain multiple hosts, the rate of incoming traffic could potentially
exceed the kernel capability to drain the buffers fast enough. If that happens, the NIC buffers
will overflow, and the traffic will be lost and counted as softirq misses. We can increase the CPU
time for the softirq to avoid that scenario, which is known as the netdev_budget, and we can
increase the budget as necessary. On our setup, we increased the budget to 1000, which means
that the softirq will drain 1000 messages on the NIC before getting off the CPU.

net.core.netdev_budget=1000 #default value 300

If the 3rd column in /proc/net/softnet_stat is gradually increasing over time:
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01877e29 00000000 00000022 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000005d

0c4a6107 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000005e

01d05820 00000000 00000012 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000005f

092b933a 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000060

It indicates that the softirq did not get enough CPU time. In that case, the budget can be
increased, preferably by small increments.

Backlog queue

Within the Linux kernel there is a queue where traffic is stored after it was received from the
NIC, but before it got processed by one of the protocol stacks (TCP/IP/ISCSI).
Each CPU core has a backlog queue where traffic is stored, if the queue is already at its
maximum capacity any additional packets will get dropped.

If the 2rd column in /proc/net/softnet_stat is gradually increasing over time:

04f88d2c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

023a354d 00000000 00000018 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

10df99e1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000002

01ba2dec 00000000 00000011 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000003

It indicates that the netdev backlog queue overflows and netdev_max_backlog need to be
increased, again preferably by small increments.

In this scale setup, we set the value to 5000.

net.core.netdev_max_backlog=5000 #default value 1000
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RHCS tuning
This section describes the Ceph-specific tuning performed on the Ceph nodes to cater to this
large-scale environment.

Placement groups (PGs) tuning

PGs are a collection of objects that are replicated by an object storage device (OSD), each
object is a container for storing data and metadata.

We can achieve the optimal number of PGs per pool by setting our target at 100PGs per OSD
(according to best practice for rbd & librados), then multiply by the maximum used capacity of
the pool (default is 85%), divide by the number of replicas,  and round to the nearest power of 2
- 2^(round(log2(x))):

( Target PGs per OSD ) x ( OSDs ) x ( %Data (pool max used capacity))

----------------------------------------------------------------------

( 3 replicas )

Or in our setup (100 * 141*0.85) / 3 =3995  rounded to a power of 2 is  4096 total  PGs.

We scripted it using basic calculator (bc):

$ echo "x=l(100*141*0.85/3)/l(2); scale=0; 2^((x+0.5)/1)" | bc -l

Note that you can increase the number of PGs per OSD even further, which can potentially
reduce the variance in per-OSD load across your cluster, but each PG requires a bit more CPU
and memory on the OSDs that are storing it. Therefore, the number of OSDs should be tested
and tuned per environment.

The next step is to apply those settings to the cluster:

$ ceph osd pool set pool_name pg_autoscaler_mode off

$ ceph osd pool set pool_name pg_num 4096
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Prometheus tuning

For monitoring the Ceph cluster, we can use the Ceph dashboard to display stats for Ceph pool.
We can run:

$ ceph config set mgr mgr/prometheus/rbd_stats_pools pool_name

To lessen the load on the system for large clusters, we can throttle the pool stats collection with:

$ ceph config set mgr mgr/prometheus/rbd_stats_pools_refresh_interval 600

#Default value 300

It's also a good idea to lower the polling rate for Prometheus to avoid turning the Ceph manager
into a bottleneck that might result in other ceph-mgr plug-ins not getting time to run.

In this case, the command sets the scrape interval to 60 seconds:

$ ceph config set mgr mgr/prometheus/scrape_interval 60 #Default value 15
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OpenShift Virtualization
Introduction

To demonstrate the OpenShift Virtualization capabilities and stability at a large scale, we will
demonstrate these workflows:

● VM deployments.
● VM boot storm.
● VM added latency with and without workload.
● VM migration with and without workload.

The density goal for this setup was set to 3000 VMs and 21,400 pods across the cluster. This
was achieved with this configuration:

● 1,500 RHEL 8.5 persistent storage VMs.
● 500 Windows10 persistent storage VMs.
● 1,000 Fedora Ephemeral storage VMs.
● 21,400 idle pods.

Or more simply put, a density of 30 VMs and 214 pods per node.

KubeletConfig

To achieve the scale mentioned in the introduction, we needed to bypass the default limit of
pods per node by applying this KubeletConfig:

apiVersion: machineconfiguration.openshift.io/v1

kind: KubeletConfig

metadata:

name: set-max-pods

spec:

machineConfigPoolSelector:

matchLabels:

custom-kubelet: enabled

kubeletConfig:

maxPods: 500

kubeAPIBurst: 200
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kubeAPIQPS: 100

Other than increasing the maxPods to 500 (default 250), we also increased the default
kubeAPIBurst to 200 (default 100) and kubeAPIQPS to 100 (default 50) to accommodate the
higher burst potential. For general comparison, the default maximum number of pods for
standard Kubernetes is 110 Pods per node.

Note that none of the above changes are required. Going above 250 pods per node is currently
not recommended because it hasn't had any long-term testing. However, throughout our
testing, we have not experienced any density-related issues.

An additional Kubeletconfig that we applied is related to BZ#1984442, which allows us to get an
even distribution of VMs pods across all nodes:

apiVersion: machineconfiguration.openshift.io/v1

kind: KubeletConfig

metadata:

name: custom-scheduling

spec:

machineConfigPoolSelector:

matchLabels:

custom-kubelet: enabled

kubeletConfig:

nodeStatusMaxImages: -1

Both custom Kubeletconfigs can be enabled for worker nodes by using a label:

oc label machineconfigpool worker custom-kubelet=enable

Note that KubeletConfig modifications will reboot the associated nodes.
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Templates

Note that all the OS  templates we used are the default templates available through the
OpenShift Virtualization templates wizard, with a few changes to our custom network.

Red Hat Linux

The template being used can be retrieved by:

oc get templates -n openshift rhel8-server-medium -o yaml

Copied here, with our changes, for completeness:

apiVersion: kubevirt.io/v1

kind: VirtualMachine

metadata:

labels:

kubevirt.io/vm: node-os-vm

name: node-os-vm

spec:

running: false

template:

metadata:

labels:

kubevirt.io/vm:

spec:

terminationGracePeriodSeconds: 60

evictionStrategy: LiveMigrate

domain:

cpu:

cores: 1

model: host-passthrough

sockets: 1

threads: 1

devices:

disks:

- disk:

bus: virtio

name:

interfaces:

- bridge: {}

model: virtio

name: nic-0

networkInterfaceMultiqueue: true

rng: {}

machine:

type: pc-q35-rhel8.4.0

resources:

requests:

cpu: "1"

memory: 4G

networks:

- multus:

networkName: linux-bridge
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name: nic-0

volumes:

- dataVolume:

name:

name:

dataVolumeTemplates:

- metadata:

annotations

name:

spec:

pvc:

accessModes:

- ReadWriteMany

resources:

requests:

storage: 40Gi

volumeMode: Block

storageClassName: ocs-external-storagecluster-ceph-rbd

source:

pvc:

namespace: "default"

name: "rhel-dv"

Fedora

The template being used can be retrieved by:

oc get templates -n openshift fedora-desktop-medium -o yaml

Copied here, with our changes, for completeness:

apiVersion: kubevirt.io/v1

kind: VirtualMachine

metadata:

labels:

app:

kubevirt-vm:

name:

spec:

annotations:

descheduler.alpha.kubernetes.io/evict: "true"

kubevirt.io/provisionOnNode:

terminationGracePeriodSeconds: 0

evictionStrategy: Restart

running: true

template:

metadata:

labels:

kubevirt-vm: node-os-vm

spec:

domain:

cpu:

cores: 1
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sockets: 1

threads: 1

devices:

disks:

- disk:

bus: virtio

name: containerdisk

- disk:

bus: virtio

name: cloudinitdisk

machine:

type: pc-q35-rhel8.4.0

resources:

requests:

memory: 256Mi

cpu: 100m

limits:

cpu: 100m

terminationGracePeriodSeconds: 0

volumes:

- containerDisk:

image: quay.io/kubevirt/fedora-container-disk-images:35

name: containerdisk

- cloudInitNoCloud:

userData: |-

#cloud-config

Password: "password"

chpasswd: { expire: False }

runcmd:

- sed -i -e "s/PasswordAuthentication.*/PasswordAuthentication yes/" /etc/ssh/sshd_config

- systemctl restart sshd

name: cloudinitdisk

status: {}

Windows

The template being used can be retrieved by:

oc get templates -n openshift windows10-desktop-medium -o yaml

Copied here, with our changes, for completeness:

apiVersion: kubevirt.io/v1

kind: VirtualMachine

metadata:

labels:

kubevirt.io/vm:

name:

spec:

running: false

template:

metadata:

labels:

kubevirt.io/vm:

spec:
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terminationGracePeriodSeconds: 0

evictionStrategy: LiveMigrate

domain:

clock:

timer:

hpet:

present: false

hyperv: {}

pit:

tickPolicy: delay

rtc:

tickPolicy: catchup

utc: {}

cpu:

cores: 1

model: host-passthrough

sockets: 1

threads: 1

devices:

blockMultiQueue: false

disks:

- disk:

bus: virtio

name:

interfaces:

- bridge: {}

model: virtio

name: nic-0

features:

acpi: {}

apic: {}

hyperv:

frequencies: {}

ipi: {}

reenlightenment: {}

relaxed: {}

reset: {}

runtime: {}

spinlocks:

spinlocks: 8191

synic: {}

synictimer:

direct: {}

vapic: {}

vpindex: {}

machine:

type: pc-q35-rhel8.4.0

resources:

requests:

cpu: "1"

memory: 4G

limits:

networks:

- multus:

networkName: linux-bridge

name: nic-0

volumes:

- dataVolume:

name:

name:

dataVolumeTemplates:

- metadata:

annotations:

name:
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spec:

pvc:

accessModes:

- ReadWriteMany

resources:

requests:

storage: 40Gi

volumeMode: Block

storageClassName: ocs-external-storagecluster-ceph-rbd

source:

pvc:

namespace: "default"

name: "win10-dv"

Pod

kind: Pod

apiVersion: v1

metadata:

name: vdpod-pod-name

namespace: pods-space

labels:

name: vdpod-density

spec:

nodeSelector:

node-role.kubernetes.io/worker: ""

restartPolicy: "Always"

containers:

- name: vdpod-pod-name

image: gcr.io/google_containers/pause-amd64:3.0

ports:

imagePullPolicy: IfNotPresent

securityContext:

privileged: false

VMs deployment

VM deployment is the base of any virtual environment. When we aim for a high scale, the faster
we can deploy a large number of VMs directly affects the efficiency of our production.

In this section, we will showcase what kind of performance one can expect when cloning multiple
VM images from a golden image source using the Ceph CSI cloning method.
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Note that if you clone more than 100 VMs using the CSI-clone cloning strategy, then the Ceph
CSI might not purge the clones, and manually deleting the clones might also fail (BZ#2055595).
So it's best to avoid snapshot cloning at this time and use cloneStrategy: copy instead.

To enable CSI snapshot cloning, editing the OpenShift Virtualization storage profile is needed:

oc edit -n openshift-cnv storageprofile <storage class name>

And adding this spec:

spec:

cloneStrategy: csi-clone

We start by importing a RHEL QCOW image from one of our hosts into a data volume (DV):

apiVersion: cdi.kubevirt.io/v1alpha1

kind: DataVolume

metadata:

name: rhel-clone-dv

spec:

source:

http:

url: http://internel.server.com/ISO/rhel8.qcow2

pvc:

accessModes:

- ReadWriteMany

resources:

requests:

storage: 40Gi

volumeMode: Block

storageClassName: ocs-external-storagecluster-ceph-rbd

Once the import is done, we deploy the desired number of VMs in parallel and measure how long
it takes for every VM to complete the cloning. We do that by querying every VM with a 2-second
interval window until the clone is completed.
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The most effective way to deploy VMs will be in groups of 100, meaning deploy 100 VMs, wait
for the cloning to complete, and deploy the next 100 VMs.

Generally speaking, once we go above the parallel deployment of 10 VMs, a penalty will occur
that happens because at the Ceph CSI level, it acquires a lock on parent image vol-id, so cloning
from the same parent image is not parallel but actually serial, and the external provisioner can
only send 10 gRPC parallel calls to CSI driver at any time.

In addition, once we pass the 250 clones mark, rbd images will start flattening, which will
increase the cloning penalty much further. The time it takes to flatten a clone increases with the
size of the snapshot.
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VMs boot storm

In this scenario, we tested how long it took to boot a large number of VMs, which showcases how
both OpenShift Virtualization and the control plane are resilient. It's a scenario that often occurs
when recovering an environment from a disaster—such as a power outage, for example.

The measurement is for every VM starting at request time and stopping once the VM is running
and accessible through SSH access (meaning the host booted successfully and the SSH
daemon is up). We measured the times by running a query against each VM. When the status
changes to “Running,” it then attempts to SSH to the VM every 2 seconds, until the SSH
connection is successful.

25



Like the deployment scenario, all VMs start requests run in parallel to stress all the moving parts
of the cluster.

As we can see in the charts below, with our homogeneous OCP cluster, the boot times are
almost linear up to 1000 VMs, but the larger queues might result in slower boot times.
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VMs latency

Each VM has its own IO thread for processing IO unless there are multiple persistent volume
claims (PVC) and dedicatedIOThread: is set to true. In that case, each PVC will have its own
IO thread.

In the following scenario, we used 15 VMs per worker node and tested up to 64 worker nodes, or
960 VMs, to demonstrate that although there are multiple concurrent threads that are
accessing the RHCS cluster, those by themselves will not cause any latency penalties.

For the purpose of this scenario, we choose to use the 4KB block size for both random reads and
random writes, and we ran these tests:

● Baseline - We used 15 VMs from every worker node with each VM generating a single
IOPS starting at 15 VMs ( 15 IOPS, Single node) and ending at 64 nodes for a total of
960 VMs (960 IOPS).

● Workload - We used exactly 15 VMs from every worker node with each VM generating
1000 IOPS starting at 15 VMs ( 15,000 IOPS, Single node) and ending at 64 nodes for a
total of 960 VMs (960,000 IOPS).

Each VM filesystem dataset consists of 300 directories, each directory contains 8 files, and
each file is 20MiB in size, or more simply put each VM has a 4.8 GiB dataset.

We chose a small block to avoid, as much as possible, any inconsistencies that might occur due
to networking and Ceph non-homogeneous disks on the RHCS cluster.

Note that although we used up to 960 VMs in our testing, in total there were actually 3000 VMs
running on the cluster along with 21,400 pods.

As we can see in both charts below, while running the baseline tests, the variance in latency for
both random reads and random writes was less than 0.04%.
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The chart below shows the latency trend of the workload scenario in comparison to the baseline
results  (lower means better). When it comes to read performance, a higher IOPS rate will yield
lower latency to some extent, which happens due to the resources allocation that occurs during
higher bursts when compared to idle/low IOPS workload on the VM.

However, writes have a different dataflow, which is required to maintain high availability. As
shown in the diagram, for every write Ceph generates, 3 copies of the data go through the
network to each of their respective OSDs. Therefore, the write latency will be impacted.

Note that in cases of latency-sensitive applications, the write latency overhead can be reduced
by one-third for every data replica reduced.
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VMs migration

In the following scenario, we tested a 1000 VMs migration. To simulate a realistic migration, we
didn’t just migrate VMs, but we also rebooted the worker nodes that those VMs reside on. We
achieved that by dividing the nodes into 3 zones and then applying an empty machine config to
a specific zone, which results in a reboot of all nodes that were associated with that specific
zone once all the VMs that resided on the worker nodes are evicted.

We started by labeling every worker to a specific zone:

oc label node worker01 node-role.kubernetes.io/zone-0=""

oc label node worker02 node-role.kubernetes.io/zone-1=""

oc label node worker03 node-role.kubernetes.io/zone-2=""

Then we created a machine config pool for every zone. Note that maxUnavailable: 10 sets the
number of nodes that are allowed to go down at any given time of the zone life:

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfigPool

metadata:

name: zone-0

spec:

machineConfigSelector:

matchExpressions:

- {key: machineconfiguration.openshift.io/role, operator: In, values:

[worker, zone-2]}

nodeSelector:

matchLabels:

node-role.kubernetes.io/zone-0: ""

paused: false

maxUnavailable: 10

We also edited the hyperconverged-cluster operator:

oc edit hco -n openshift-cnv kubevirt-hyperconverged
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And set the following migration settings to increase the amount of parallel migrations :

liveMigrationConfig:

completionTimeoutPerGiB: 800

parallelMigrationsPerCluster: 20 # default 5

parallelOutboundMigrationsPerNode: 4 # default 2

progressTimeout: 150

Through our testing, we found that it is highly recommended to increase the number of virt-api
pods to a ratio of 1 kubevirt-api pod for every 750 VMs. Since we were running 3000 VMs in
this setup, we scaled the number of kubevirt API Pods to 4.

Auto-scaling functionality for this scenario is already in the works, and can be tracked at
Github#7101. Currently, it can be done manually by patching the hyperconverged operator:

oc patch hco -n openshift-cnv kubevirt-hyperconverged --type=merge -p

'{"metadata":{"annotations":{"kubevirt.kubevirt.io/jsonpatch":"[{\"op\":

\"add\", \"path\": \"/spec/customizeComponents/patches\", \"value\":

[{\"resourceType\": \"Deployment\", \"resourceName\": \"virt-api\",

\"type\": \"json\", \"patch\": \"[{\\\"op\\\": \\\"replace\\\",

\\\"path\\\": \\\"/spec/replicas\\\", \\\"value\\\": 4}]\"}]}]"}}}'

We then trigger the migration by creating this machine config:

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

labels:

machineconfiguration.openshift.io/role: zone_target #target zone name

name: job_name #must be unique every time.

spec:

config:

ignition:

config: {}

security:

tls: {}

timeouts: {}
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version: 3.1.0

networkd: {}

passwd: {}

storage:

files:

- contents:

source: data:text/plain;charset=utf-8;base64,Zm9vCg==

verification: {}

filesystem: root

mode: 420

path: /var/tmp/tmp_dir

osImageURL: ""

The 1000 migrated VMs consisted of:
● 400 RHEL VMs.
● 400 Fedora VMs.
● 200 Windows VMs.

The 7000 pods co-located with the VMs were also restarted on different worker nodes.

When migrating, we can see in the VMI logs, for any VM, how long it took to complete the
migration:

Phase Transition Timestamps:

Phase: Scheduling

Phase Transition Timestamp: 2022-04-10T07:15:13Z

Phase: Scheduled

Phase Transition Timestamp: 2022-04-10T07:15:23Z

Phase: Running

Phase Transition Timestamp: 2022-04-10T07:15:25Z
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The charts below show the migration times of each OS distributed by percentage. For example,
on the RHEL VMs migration, 35% of the VMs completed the migration with an average time of 7
seconds.

Note that migration time is not necessarily OS-related but rather related to guest load at the
time, host load, network load, storage technology, migration policy, image size, etc. Therefore,
those results may vary.
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Average migration time per OS:

OS Avg migration time (sec) Comments

RHEL 14 40GiB PVC

Fedora 23 Container disk
evictionStrategy: Restart

Windows 12 40GiB PVC

To sum things up, from start to finish, migration took a total of 118 minutes + 35 minutes that we
spent waiting for the nodes to reach “Ready” state due to the maxUnavailable: 10 that we
mentioned earlier.

VMs migration added latency

In the following scenario, we tested a 1000 VMs migration, but this time we only used RHEL
VMs. We decided to use only RHEL VMs to avoid any discrepancies that might occur due to the
way different operating systems handle IO.

Like before, we choose to use the 4KB block size for both random reads and random writes, and
we ran these tests:

● Baseline - each of the 1K VMs is generating a single IOPS to a total of 1K IOPS.
● Workload - each of the 1K VMs is generating 1000 IOPS per second to a total of one

million IOPS.

The graph below shows the average latency penalty during migration for both reads and writes
compared to the baseline (RHEL VMs only):
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In addition, as we can see in the chart below, the migration time was impacted by 5%. Note that
migration time results may vary due to BZ#2069098:
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Cluster upgrade at scale
In the following scenario, we tested both minor and major upgrades.

We started with upgrading the cluster from version 4.9.15 to 4.9.23 while simulating a real
production upgrade, meaning all 3000 VMs and 21,400 pods were running on the cluster. In
addition, a light workload of 4KB was generated on 1500 VMs at a rate of 100 IOPS per VM.

We initiated the upgrade by running:

$ oc adm upgrade --to 4.9.23

The upgrade progress can be tracked using:

$ oc get clusterversion

NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS

version   4.9.15    True        True          25m     Working towards

4.9.23: 569 of 738 done (77% complete)

The total duration for the minor upgrade process took a total of 35 minutes.

The next step was testing a major upgrade by upgrading the cluster from version 4.9.23 to
4.10.9, again running the upgrade under the same conditions as before. We started the upgrade
by running:

oc adm upgrade channel candidate-4.10 --allow-explicit-channel

oc adm upgrade --to 4.10.9  --allow-explicit-upgrade

Like before, the upgrade progress can be tracked using:

NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS

version   4.9.23    True        True          40m    Working towards

4.10.9: 95 of 771 done (12% complete)
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The total duration for the entire major upgrade process took a total of 136 minutes.

Note that some upgrades might include modifications that will require all nodes to go through a
soft reset, which will significantly increase upgrade time due to the added migration time.

Conclusion
In this reference architecture, we demonstrated the OpenShift Virtualization capabilities and
resilience over a large scale. the OpenShift Virtualization feature of Red Hat OpenShift
Container Platform, along with Red Hat Ceph Storage and/or Red Hat OpenShift Data
Foundation can offer a complete production solution that incorporates containers, virtual
machines, and high-availability storage, and it can be deployed on any host that meets the
minimum hardware requirements.

While this reference architecture outlines how the set goal can be achieved, it is important to
consider other architectures for appropriate resilience, scalability, and seamless daily operations
given environmental conditions and requirements. For example, when crossing certain limits, a
multicluster approach should be considered when the number of nodes or the workload
becomes too large or too much churn is taking place on the cluster.

Additional resources
System and environment requirements:
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html

OpenShift templates:
https://docs.openshift.com/container-platform/4.9/openshift_images/using-templates.html

Machine config operator:
https://docs.openshift.com/container-platform/4.9/post_installation_configuration/machine-co
nfiguration-tasks.html
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Live migration and timeouts:
https://docs.openshift.com/container-platform/4.9/virt/live_migration/virt-live-migration-limits
.html

Updating a cluster using the CLI:
https://docs.openshift.com/container-platform/4.10/updating/updating-cluster-cli.html
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